File size: 7,128 Bytes
b5650f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "COVID-19"
cohort = "GSE216705"
# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE216705"
# Output paths
out_data_file = "./output/preprocess/1/COVID-19/GSE216705.csv"
out_gene_data_file = "./output/preprocess/1/COVID-19/gene_data/GSE216705.csv"
out_clinical_data_file = "./output/preprocess/1/COVID-19/clinical_data/GSE216705.csv"
json_path = "./output/preprocess/1/COVID-19/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
soft_file, matrix_file = None, None
if soft_file is None or matrix_file is None:
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file,
background_prefixes,
clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if the dataset contains gene expression data
is_gene_available = True # Based on "metaData_microarrays.txt", this is likely microarray gene expression data
# Step 2: Identify availability of trait, age, and gender data
# Since the sample characteristics only have "strain" and "metadata info" with no variation or mention of these variables,
# treat them all as not available.
trait_row = None
age_row = None
gender_row = None
# Step 2.2: Define the data conversion functions (though they won't be used here because the rows are None)
def convert_trait(x: str):
# For demonstration, parse after colon; return 1 if "COVID-19" is found, else 0, else None.
parts = x.split(':', 1)
value = parts[1].strip() if len(parts) > 1 else x
if "COVID-19" in value.lower():
return 1
return None
def convert_age(x: str):
# Convert to continuous age. We do not have actual data, so return None.
return None
def convert_gender(x: str):
# Convert to binary: female -> 0, male -> 1. Return None by default here.
return None
# Step 3: Conduct initial filtering and save metadata
# Trait data is considered available only if trait_row is not None.
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: Since trait_row is None, we skip clinical feature extraction.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The given identifiers (e.g. "10338001", "10338002") are typically probe IDs from a microarray platform.
# They do not look like standard human gene symbols such as "TP53" or "ACTB".
# Therefore, gene mapping to standard symbols is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify the columns in the gene_annotation DataFrame where 'ID' matches the probe identifiers
# and 'gene_assignment' contains the gene symbols or descriptive info to be parsed.
prob_col = "ID"
gene_col = "gene_assignment"
# 2. Get a DataFrame mapping from probe IDs to gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd
# STEP7: Data Normalization and Linking
# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
# Read the file
clinical_temp = pd.read_csv(out_clinical_data_file)
# Adjust row index to label the trait, age, and gender properly
if clinical_temp.shape[0] == 3:
clinical_temp.index = [trait, "Age", "Gender"]
elif clinical_temp.shape[0] == 2:
clinical_temp.index = [trait, "Gender"]
elif clinical_temp.shape[0] == 1:
clinical_temp.index = [trait]
# 2) Link the clinical and normalized genetic data
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)
# 3) Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4) Check for severe bias in the trait; remove biased demographic features if present
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5) Final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=f"Final check on {cohort} with {trait}."
)
# 6) If the linked data is usable, save it
if is_usable:
linked_data.to_csv(out_data_file)
else:
# If no valid clinical data file is found, finalize metadata indicating trait unavailability
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Force a fallback so that it's flagged as unusable
df=pd.DataFrame(),
note=f"No trait data found for {cohort}, final metadata recorded."
)
# Per instructions, do not save a final linked data file when trait data is absent. |