File size: 7,128 Bytes
b5650f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "COVID-19"
cohort = "GSE216705"

# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE216705"

# Output paths
out_data_file = "./output/preprocess/1/COVID-19/GSE216705.csv"
out_gene_data_file = "./output/preprocess/1/COVID-19/gene_data/GSE216705.csv"
out_clinical_data_file = "./output/preprocess/1/COVID-19/clinical_data/GSE216705.csv"
json_path = "./output/preprocess/1/COVID-19/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
    soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
    print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
    soft_file, matrix_file = None, None

if soft_file is None or matrix_file is None:
    print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
    # 2. Read the matrix file to obtain background information and sample characteristics data
    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
    background_info, clinical_data = get_background_and_clinical_data(matrix_file,
                                                                      background_prefixes,
                                                                      clinical_prefixes)

    # 3. Obtain the sample characteristics dictionary from the clinical dataframe
    sample_characteristics_dict = get_unique_values_by_row(clinical_data)

    # 4. Explicitly print out all the background information and the sample characteristics dictionary
    print("Background Information:")
    print(background_info)
    print("\nSample Characteristics Dictionary:")
    print(sample_characteristics_dict)
# Step 1: Determine if the dataset contains gene expression data
is_gene_available = True  # Based on "metaData_microarrays.txt", this is likely microarray gene expression data

# Step 2: Identify availability of trait, age, and gender data
#         Since the sample characteristics only have "strain" and "metadata info" with no variation or mention of these variables,
#         treat them all as not available.
trait_row = None
age_row = None
gender_row = None

# Step 2.2: Define the data conversion functions (though they won't be used here because the rows are None)
def convert_trait(x: str):
    # For demonstration, parse after colon; return 1 if "COVID-19" is found, else 0, else None.
    parts = x.split(':', 1)
    value = parts[1].strip() if len(parts) > 1 else x
    if "COVID-19" in value.lower():
        return 1
    return None

def convert_age(x: str):
    # Convert to continuous age. We do not have actual data, so return None.
    return None

def convert_gender(x: str):
    # Convert to binary: female -> 0, male -> 1. Return None by default here.
    return None

# Step 3: Conduct initial filtering and save metadata
# Trait data is considered available only if trait_row is not None.
is_trait_available = (trait_row is not None)

validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# Step 4: Since trait_row is None, we skip clinical feature extraction.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The given identifiers (e.g. "10338001", "10338002") are typically probe IDs from a microarray platform.
# They do not look like standard human gene symbols such as "TP53" or "ACTB".
# Therefore, gene mapping to standard symbols is required.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify the columns in the gene_annotation DataFrame where 'ID' matches the probe identifiers
#    and 'gene_assignment' contains the gene symbols or descriptive info to be parsed.
prob_col = "ID"
gene_col = "gene_assignment"

# 2. Get a DataFrame mapping from probe IDs to gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd

# STEP7: Data Normalization and Linking

# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
    # Read the file
    clinical_temp = pd.read_csv(out_clinical_data_file)

    # Adjust row index to label the trait, age, and gender properly
    if clinical_temp.shape[0] == 3:
        clinical_temp.index = [trait, "Age", "Gender"]
    elif clinical_temp.shape[0] == 2:
        clinical_temp.index = [trait, "Gender"]
    elif clinical_temp.shape[0] == 1:
        clinical_temp.index = [trait]

    # 2) Link the clinical and normalized genetic data
    linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)

    # 3) Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4) Check for severe bias in the trait; remove biased demographic features if present
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5) Final quality validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=f"Final check on {cohort} with {trait}."
    )

    # 6) If the linked data is usable, save it
    if is_usable:
        linked_data.to_csv(out_data_file)
else:
    # If no valid clinical data file is found, finalize metadata indicating trait unavailability
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        is_biased=True,  # Force a fallback so that it's flagged as unusable
        df=pd.DataFrame(),
        note=f"No trait data found for {cohort}, final metadata recorded."
    )
    # Per instructions, do not save a final linked data file when trait data is absent.