File size: 8,636 Bytes
3088323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE190042"

# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE190042"

# Output paths
out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE190042.csv"
out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE190042.csv"
out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE190042.csv"
json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
    soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
    print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
    soft_file, matrix_file = None, None

if soft_file is None or matrix_file is None:
    print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
    # 2. Read the matrix file to obtain background information and sample characteristics data
    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
    background_info, clinical_data = get_background_and_clinical_data(matrix_file,
                                                                      background_prefixes,
                                                                      clinical_prefixes)

    # 3. Obtain the sample characteristics dictionary from the clinical dataframe
    sample_characteristics_dict = get_unique_values_by_row(clinical_data)

    # 4. Explicitly print out all the background information and the sample characteristics dictionary
    print("Background Information:")
    print(background_info)
    print("\nSample Characteristics Dictionary:")
    print(sample_characteristics_dict)
# 1) Gene Expression Data Availability
is_gene_available = True  # From the background info, gene expression (mRNA) data is present

# 2) Variable Availability and Conversion
#    The trait is "Cardiovascular_Disease", which is not present in the dictionary, so trait_row = None
trait_row = None

#    'age' is found in key=2 in the dictionary
age_row = 2

#    'gender' is found in key=1 in the dictionary
gender_row = 1

# 2.2 Define conversion functions.
def convert_trait(value: str) -> int:
    """
    Convert trait (Cardiovascular_Disease) to 0/1 if data were present.
    This dataset does not contain the trait, so this function is just a placeholder.
    """
    # No actual data to parse, return None or 0
    return None  # Always returns None, because no trait info is available

def convert_age(value: str) -> float:
    """
    Convert age from string format e.g., 'age: 56' to a float.
    Unknown or invalid values return None.
    """
    # Split on colon and take the second part
    parts = value.split(':')
    if len(parts) < 2:
        return None
    try:
        return float(parts[1].strip())
    except ValueError:
        return None

def convert_gender(value: str) -> int:
    """
    Convert gender from format e.g., 'gender: M' or 'gender: F' to 1 or 0.
    M -> 1, F -> 0, unknown -> None.
    """
    parts = value.split(':')
    if len(parts) < 2:
        return None
    val = parts[1].strip().upper()
    if val == 'M':
        return 1
    elif val == 'F':
        return 0
    else:
        return None

# 3) Save Metadata (initial filtering)
#    trait is unavailable because trait_row is None
is_trait_available = (trait_row is not None)

is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4) Clinical Feature Extraction: Skip because trait_row is None (trait data not available).
#    Hence, no geo_select_clinical_features call here.
# STEP3
# Attempt to read gene expression data; if the library function yields an empty DataFrame,
# try re-reading without ignoring lines that start with '!' (because sometimes GEO data may
# place actual expression rows under lines that begin with '!').

gene_data = get_genetic_data(matrix_file)
if gene_data.empty:
    print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.")
    import gzip

    # Locate the marker line first
    skip_rows = 0
    with gzip.open(matrix_file, 'rt') as file:
        for i, line in enumerate(file):
            if "!series_matrix_table_begin" in line:
                skip_rows = i + 1
                break

    # Read the data again, this time not treating '!' as comment
    gene_data = pd.read_csv(
        matrix_file,
        compression="gzip",
        skiprows=skip_rows,
        delimiter="\t",
        on_bad_lines="skip"
    )
    gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"})
    gene_data.set_index("ID", inplace=True)

# Print the first 20 row IDs to confirm data structure
print(gene_data.index[:20])
# Based on the given identifiers (e.g., "11715100_at", "11715101_s_at"), these are Affymetrix probe IDs 
# rather than standard human gene symbols, so mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1) Identify the columns in 'gene_annotation' that correspond to the probe IDs in the gene expression data
#    and the gene symbols. From the preview, they appear to be 'ID' (probe IDs) and 'Gene Symbol' (gene symbols).
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")

# 2) Convert probe-level measurements to gene expression data using the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# For verification, print the resulting dataframe dimensions and preview
print("Mapped gene_data dimensions:", gene_data.shape)
print(gene_data.head())
import os
import pandas as pd

# STEP7: Data Normalization and Linking

# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
    # Read the file
    clinical_temp = pd.read_csv(out_clinical_data_file)

    # Adjust row index to label the trait, age, and gender properly
    if clinical_temp.shape[0] == 3:
        clinical_temp.index = [trait, "Age", "Gender"]
    elif clinical_temp.shape[0] == 2:
        clinical_temp.index = [trait, "Gender"]
    elif clinical_temp.shape[0] == 1:
        clinical_temp.index = [trait]

    # 2) Link the clinical and normalized genetic data
    linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)

    # 3) Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4) Check for severe bias in the trait; remove biased demographic features if present
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5) Final quality validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=f"Final check on {cohort} with {trait}."
    )

    # 6) If the linked data is usable, save it
    if is_usable:
        linked_data.to_csv(out_data_file)
else:
    # If no valid clinical data file is found, finalize metadata indicating trait unavailability
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        is_biased=True,  # Force a fallback so that it's flagged as unusable
        df=pd.DataFrame(),
        note=f"No trait data found for {cohort}, final metadata recorded."
    )
    # Per instructions, do not save a final linked data file when trait data is absent.