File size: 8,636 Bytes
3088323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE190042"
# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE190042"
# Output paths
out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE190042.csv"
out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE190042.csv"
out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE190042.csv"
json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
soft_file, matrix_file = None, None
if soft_file is None or matrix_file is None:
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file,
background_prefixes,
clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Gene Expression Data Availability
is_gene_available = True # From the background info, gene expression (mRNA) data is present
# 2) Variable Availability and Conversion
# The trait is "Cardiovascular_Disease", which is not present in the dictionary, so trait_row = None
trait_row = None
# 'age' is found in key=2 in the dictionary
age_row = 2
# 'gender' is found in key=1 in the dictionary
gender_row = 1
# 2.2 Define conversion functions.
def convert_trait(value: str) -> int:
"""
Convert trait (Cardiovascular_Disease) to 0/1 if data were present.
This dataset does not contain the trait, so this function is just a placeholder.
"""
# No actual data to parse, return None or 0
return None # Always returns None, because no trait info is available
def convert_age(value: str) -> float:
"""
Convert age from string format e.g., 'age: 56' to a float.
Unknown or invalid values return None.
"""
# Split on colon and take the second part
parts = value.split(':')
if len(parts) < 2:
return None
try:
return float(parts[1].strip())
except ValueError:
return None
def convert_gender(value: str) -> int:
"""
Convert gender from format e.g., 'gender: M' or 'gender: F' to 1 or 0.
M -> 1, F -> 0, unknown -> None.
"""
parts = value.split(':')
if len(parts) < 2:
return None
val = parts[1].strip().upper()
if val == 'M':
return 1
elif val == 'F':
return 0
else:
return None
# 3) Save Metadata (initial filtering)
# trait is unavailable because trait_row is None
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4) Clinical Feature Extraction: Skip because trait_row is None (trait data not available).
# Hence, no geo_select_clinical_features call here.
# STEP3
# Attempt to read gene expression data; if the library function yields an empty DataFrame,
# try re-reading without ignoring lines that start with '!' (because sometimes GEO data may
# place actual expression rows under lines that begin with '!').
gene_data = get_genetic_data(matrix_file)
if gene_data.empty:
print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.")
import gzip
# Locate the marker line first
skip_rows = 0
with gzip.open(matrix_file, 'rt') as file:
for i, line in enumerate(file):
if "!series_matrix_table_begin" in line:
skip_rows = i + 1
break
# Read the data again, this time not treating '!' as comment
gene_data = pd.read_csv(
matrix_file,
compression="gzip",
skiprows=skip_rows,
delimiter="\t",
on_bad_lines="skip"
)
gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"})
gene_data.set_index("ID", inplace=True)
# Print the first 20 row IDs to confirm data structure
print(gene_data.index[:20])
# Based on the given identifiers (e.g., "11715100_at", "11715101_s_at"), these are Affymetrix probe IDs
# rather than standard human gene symbols, so mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1) Identify the columns in 'gene_annotation' that correspond to the probe IDs in the gene expression data
# and the gene symbols. From the preview, they appear to be 'ID' (probe IDs) and 'Gene Symbol' (gene symbols).
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
# 2) Convert probe-level measurements to gene expression data using the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# For verification, print the resulting dataframe dimensions and preview
print("Mapped gene_data dimensions:", gene_data.shape)
print(gene_data.head())
import os
import pandas as pd
# STEP7: Data Normalization and Linking
# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
# Read the file
clinical_temp = pd.read_csv(out_clinical_data_file)
# Adjust row index to label the trait, age, and gender properly
if clinical_temp.shape[0] == 3:
clinical_temp.index = [trait, "Age", "Gender"]
elif clinical_temp.shape[0] == 2:
clinical_temp.index = [trait, "Gender"]
elif clinical_temp.shape[0] == 1:
clinical_temp.index = [trait]
# 2) Link the clinical and normalized genetic data
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)
# 3) Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4) Check for severe bias in the trait; remove biased demographic features if present
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5) Final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=f"Final check on {cohort} with {trait}."
)
# 6) If the linked data is usable, save it
if is_usable:
linked_data.to_csv(out_data_file)
else:
# If no valid clinical data file is found, finalize metadata indicating trait unavailability
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Force a fallback so that it's flagged as unusable
df=pd.DataFrame(),
note=f"No trait data found for {cohort}, final metadata recorded."
)
# Per instructions, do not save a final linked data file when trait data is absent. |