File size: 6,910 Bytes
3088323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE285666"

# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE285666"

# Output paths
out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE285666.csv"
out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE285666.csv"
out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE285666.csv"
json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
    soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
    print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
    soft_file, matrix_file = None, None

if soft_file is None or matrix_file is None:
    print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
    # 2. Read the matrix file to obtain background information and sample characteristics data
    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
    background_info, clinical_data = get_background_and_clinical_data(matrix_file,
                                                                      background_prefixes,
                                                                      clinical_prefixes)

    # 3. Obtain the sample characteristics dictionary from the clinical dataframe
    sample_characteristics_dict = get_unique_values_by_row(clinical_data)

    # 4. Explicitly print out all the background information and the sample characteristics dictionary
    print("Background Information:")
    print(background_info)
    print("\nSample Characteristics Dictionary:")
    print(sample_characteristics_dict)
# 1. Check gene expression data availability
is_gene_available = True  # Based on Affymetrix Exon 1.0 ST arrays, this dataset likely contains gene expression data.

# 2. Determine data availability for trait, age, and gender
#    From the sample characteristics dictionary, we only have disease states labeled for Williams syndrome and controls.
#    This does not match our required trait "Cardiovascular_Disease." There's no mention of age or gender.
trait_row = None
age_row = None
gender_row = None

# 2.2 Define data type conversion functions (though they will not be used when row=None)
def convert_trait(value: str) -> Optional[int]:
    return None  # No trait data available

def convert_age(value: str) -> Optional[float]:
    return None  # No age data available

def convert_gender(value: str) -> Optional[int]:
    return None  # No gender data available

# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction is skipped because trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the gene identifiers observed (e.g., '2315554', '2315633', etc.), they appear to be probe identifiers
# rather than human gene symbols, so gene symbol mapping is required.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify the columns in our gene_annotation DataFrame that correspond to the probe ID (matching gene_data.index)
#    and the gene symbol. From the preview, 'ID' matches our probe identifiers, and 'gene_assignment' contains gene symbols.
probe_col = 'ID'
symbol_col = 'gene_assignment'

# 2. Get the gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col)

# 3. Convert probe-level measurements to gene expression data by applying the mapping
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd

# STEP7: Data Normalization and Linking

# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
    # Read the file
    clinical_temp = pd.read_csv(out_clinical_data_file)

    # Adjust row index to label the trait, age, and gender properly
    if clinical_temp.shape[0] == 3:
        clinical_temp.index = [trait, "Age", "Gender"]
    elif clinical_temp.shape[0] == 2:
        clinical_temp.index = [trait, "Gender"]
    elif clinical_temp.shape[0] == 1:
        clinical_temp.index = [trait]

    # 2) Link the clinical and normalized genetic data
    linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)

    # 3) Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4) Check for severe bias in the trait; remove biased demographic features if present
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5) Final quality validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=f"Final check on {cohort} with {trait}."
    )

    # 6) If the linked data is usable, save it
    if is_usable:
        linked_data.to_csv(out_data_file)
else:
    # If no valid clinical data file is found, finalize metadata indicating trait unavailability
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        is_biased=True,  # Force a fallback so that it's flagged as unusable
        df=pd.DataFrame(),
        note=f"No trait data found for {cohort}, final metadata recorded."
    )
    # Per instructions, do not save a final linked data file when trait data is absent.