File size: 6,910 Bytes
3088323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE285666"
# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE285666"
# Output paths
out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE285666.csv"
out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE285666.csv"
out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE285666.csv"
json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
soft_file, matrix_file = None, None
if soft_file is None or matrix_file is None:
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file,
background_prefixes,
clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Check gene expression data availability
is_gene_available = True # Based on Affymetrix Exon 1.0 ST arrays, this dataset likely contains gene expression data.
# 2. Determine data availability for trait, age, and gender
# From the sample characteristics dictionary, we only have disease states labeled for Williams syndrome and controls.
# This does not match our required trait "Cardiovascular_Disease." There's no mention of age or gender.
trait_row = None
age_row = None
gender_row = None
# 2.2 Define data type conversion functions (though they will not be used when row=None)
def convert_trait(value: str) -> Optional[int]:
return None # No trait data available
def convert_age(value: str) -> Optional[float]:
return None # No age data available
def convert_gender(value: str) -> Optional[int]:
return None # No gender data available
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction is skipped because trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the gene identifiers observed (e.g., '2315554', '2315633', etc.), they appear to be probe identifiers
# rather than human gene symbols, so gene symbol mapping is required.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify the columns in our gene_annotation DataFrame that correspond to the probe ID (matching gene_data.index)
# and the gene symbol. From the preview, 'ID' matches our probe identifiers, and 'gene_assignment' contains gene symbols.
probe_col = 'ID'
symbol_col = 'gene_assignment'
# 2. Get the gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col)
# 3. Convert probe-level measurements to gene expression data by applying the mapping
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd
# STEP7: Data Normalization and Linking
# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
# Read the file
clinical_temp = pd.read_csv(out_clinical_data_file)
# Adjust row index to label the trait, age, and gender properly
if clinical_temp.shape[0] == 3:
clinical_temp.index = [trait, "Age", "Gender"]
elif clinical_temp.shape[0] == 2:
clinical_temp.index = [trait, "Gender"]
elif clinical_temp.shape[0] == 1:
clinical_temp.index = [trait]
# 2) Link the clinical and normalized genetic data
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)
# 3) Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4) Check for severe bias in the trait; remove biased demographic features if present
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5) Final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=f"Final check on {cohort} with {trait}."
)
# 6) If the linked data is usable, save it
if is_usable:
linked_data.to_csv(out_data_file)
else:
# If no valid clinical data file is found, finalize metadata indicating trait unavailability
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Force a fallback so that it's flagged as unusable
df=pd.DataFrame(),
note=f"No trait data found for {cohort}, final metadata recorded."
)
# Per instructions, do not save a final linked data file when trait data is absent. |