File size: 6,096 Bytes
3088323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cervical_Cancer"
cohort = "GSE131027"
# Input paths
in_trait_dir = "../DATA/GEO/Cervical_Cancer"
in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE131027"
# Output paths
out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE131027.csv"
out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE131027.csv"
out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE131027.csv"
json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Determine if gene expression data is available
is_gene_available = True # Based on the series description indicating "expression features", assume it's gene expression.
# 2) Determine data availability for 'trait', 'age', 'gender'.
# From the sample characteristics dictionary, we observe:
# Key=1 has various "cancer: ..." entries, including 'cancer: Cervical cancer'.
# There's no row for age or gender. Hence age_row = None and gender_row = None.
trait_row = 1
age_row = None
gender_row = None
# 2) Define data type conversions.
def convert_trait(value: str):
"""
Extract the substring after the colon (':') and check if it matches 'Cervical cancer'.
Return 1 if it is Cervical cancer, 0 otherwise. If the string is malformed or unknown, return None.
"""
parts = value.split(':')
if len(parts) < 2:
return None
cancer_type = parts[1].strip().lower()
if "cervical cancer" in cancer_type:
return 1
else:
return 0
def convert_age(value: str):
"""
Age data is not available in this dataset, so always return None.
"""
return None
def convert_gender(value: str):
"""
Gender data is not available in this dataset, so always return None.
"""
return None
# 3) Conduct initial filtering and save metadata.
# Trait data is considered available if trait_row is not None.
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4) If we have trait data (trait_row is not None), extract clinical features and save.
if is_trait_available:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the resulting clinical features
preview_result = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_result)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify which columns match the probe identifiers in the gene_data and the gene symbols in the annotation.
# Based on the preview, "ID" holds the probe IDs, and "Gene Symbol" holds the gene symbols.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
# 2. Convert probe-level to gene-level expression.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (Optional) Print out basic info or preview for confirmation
print("Gene data shape after mapping:", gene_data.shape)
print("First 5 gene names in mapped data:")
print(gene_data.index[:5])
# STEP 7
# 1. Normalize gene symbols in the gene_data, then save to CSV.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait and demographic features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Conduct final validation and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Trait is available. Completed linking and QC steps."
)
# 6. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file) |