File size: 6,096 Bytes
3088323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cervical_Cancer"
cohort = "GSE131027"

# Input paths
in_trait_dir = "../DATA/GEO/Cervical_Cancer"
in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE131027"

# Output paths
out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE131027.csv"
out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE131027.csv"
out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE131027.csv"
json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Determine if gene expression data is available
is_gene_available = True  # Based on the series description indicating "expression features", assume it's gene expression.

# 2) Determine data availability for 'trait', 'age', 'gender'.

# From the sample characteristics dictionary, we observe:
#   Key=1 has various "cancer: ..." entries, including 'cancer: Cervical cancer'.
#   There's no row for age or gender. Hence age_row = None and gender_row = None.
trait_row = 1
age_row = None
gender_row = None

# 2) Define data type conversions.
def convert_trait(value: str):
    """
    Extract the substring after the colon (':') and check if it matches 'Cervical cancer'.
    Return 1 if it is Cervical cancer, 0 otherwise. If the string is malformed or unknown, return None.
    """
    parts = value.split(':')
    if len(parts) < 2:
        return None
    cancer_type = parts[1].strip().lower()
    if "cervical cancer" in cancer_type:
        return 1
    else:
        return 0

def convert_age(value: str):
    """
    Age data is not available in this dataset, so always return None.
    """
    return None

def convert_gender(value: str):
    """
    Gender data is not available in this dataset, so always return None.
    """
    return None

# 3) Conduct initial filtering and save metadata.
#    Trait data is considered available if trait_row is not None.
is_trait_available = (trait_row is not None)

validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4) If we have trait data (trait_row is not None), extract clinical features and save.
if is_trait_available:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )

    # Preview the resulting clinical features
    preview_result = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview_result)

    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify which columns match the probe identifiers in the gene_data and the gene symbols in the annotation.
#    Based on the preview, "ID" holds the probe IDs, and "Gene Symbol" holds the gene symbols.

mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")

# 2. Convert probe-level to gene-level expression.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Print out basic info or preview for confirmation
print("Gene data shape after mapping:", gene_data.shape)
print("First 5 gene names in mapped data:")
print(gene_data.index[:5])
# STEP 7

# 1. Normalize gene symbols in the gene_data, then save to CSV.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait and demographic features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Conduct final validation and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Trait is available. Completed linking and QC steps."
)

# 6. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file)