File size: 6,497 Bytes
3088323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cervical_Cancer"
cohort = "GSE138079"

# Input paths
in_trait_dir = "../DATA/GEO/Cervical_Cancer"
in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138079"

# Output paths
out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE138079.csv"
out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE138079.csv"
out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE138079.csv"
json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
import pandas as pd
from typing import Optional, Callable, Any, Dict

# 1. Gene expression data availability
is_gene_available = True  # This dataset is labeled as mRNA expression data.

# 2. Variable Availability and Data Type Conversion
#    After examining the sample characteristics, no rows match the human Cervical_Cancer trait,
#    and there is no age or gender info. Hence, all three rows are None.
trait_row = None
age_row = None
gender_row = None

#    Define conversion functions. Even though data is unavailable, we still need these
#    as placeholders. A typical approach is to parse the string after “:” if present,
#    but we return None to indicate no valid data.
def convert_trait(value: str) -> Optional[float]:
    return None

def convert_age(value: str) -> Optional[float]:
    return None

def convert_gender(value: str) -> Optional[int]:
    return None

# 3. Save Metadata (Initial Filtering)
#    Trait is not available, so is_trait_available is False.
is_trait_available = (trait_row is not None)

is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
#    Since trait_row is None, we skip clinical feature extraction.
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    preview = preview_df(selected_clinical_df)
    selected_clinical_df.to_csv(out_clinical_data_file)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the index values shown (e.g., '12', '13', '14'), these are not recognized human gene symbols.
# They appear more like numeric or probe identifiers. Therefore, gene symbol mapping is needed.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6: Gene Identifier Mapping

# 1. Decide which columns store the probe identifiers and the gene symbols.
#    From the annotation preview, "ID" appears to match the probe identifiers in gene_data,
#    and "GENE_SYMBOL" is likely the column for gene symbols.

probe_col = "ID"
gene_symbol_col = "GENE_SYMBOL"

# 2. Get the gene mapping dataframe by extracting the relevant columns.
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)

# 3. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7

# Before proceeding, check if trait data is actually available from previous steps. 
# If not, we cannot link clinical and genetic data, so we skip those steps.
# We will still normalize gene symbols, then record the dataset status appropriately.

# 1. Normalize gene symbols in the gene_data, then save to CSV.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. If trait data is not available, perform initial (non-final) validation, then skip linking & QC steps.
if not is_trait_available:
    is_usable = validate_and_save_cohort_info(
        is_final=False,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,   # We do have gene data
        is_trait_available=False, # No trait data was found
        note="No trait data; skipping linking and QC steps."
    )
    # Since the dataset isn't usable without trait data, do not proceed further.
else:
    # If trait data is available, proceed with linking and QC steps.
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
    linked_data = handle_missing_values(linked_data, trait)
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 3. Final validation (since trait data is present).
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Trait is available. Completed linking and QC steps."
    )

    # 4. If the dataset is usable, save the final linked data.
    if is_usable:
        linked_data.to_csv(out_data_file)