File size: 6,588 Bytes
0db4514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cervical_Cancer"
cohort = "GSE138080"
# Input paths
in_trait_dir = "../DATA/GEO/Cervical_Cancer"
in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138080"
# Output paths
out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE138080.csv"
out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE138080.csv"
out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE138080.csv"
json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step: Dataset Analysis and Clinical Feature Extraction
# 1. Determine if the dataset likely contains gene expression data
is_gene_available = True # Based on the "mRNA tissues-Agilent" description
# 2. Determine availability of variables and write conversion functions
# From the sample characteristics:
# {0: ['cell type: normal cervical squamous epithelium',
# 'cell type: cervical intraepithelial neoplasia, grade 2-3',
# 'cell type: cervical squamous cell carcinoma'],
# 1: ['hpv: high-risk HPV-positive',
# 'hpv: HPV-negative']}
# Observing these, row 0 contains different states of cervical tissue,
# which we interpret as relevant to the trait "Cervical_Cancer."
# Hence we set:
trait_row = 0
# There is no row indicating age, so:
age_row = None
# There is no row indicating gender, so:
gender_row = None
# Data Type Conversion Functions
def convert_trait(value: str):
# Extract the text after the colon if present
parts = value.split(':', 1)
val = parts[1].strip().lower() if len(parts) == 2 else value.strip().lower()
# Convert to binary (0 = normal, 1 = pre-cancer or cancer)
if "normal" in val:
return 0
elif "intraepithelial" in val or "carcinoma" in val:
return 1
return None
def convert_age(value: str):
# Not used since age is unavailable
return None
def convert_gender(value: str):
# Not used since gender is unavailable
return None
# 3. Perform initial filtering and save metadata
# Trait data is available if trait_row is not None
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical feature extraction if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview dataframe
preview = preview_df(selected_clinical_df, n=5, max_items=200)
print("Preview of selected clinical features:", preview)
# Save the clinical data
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("These numeric entries appear to be probe IDs or some numeric references, not standard human gene symbols.\nrequires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Determine which columns in gene_annotation match the probe IDs in gene_data and which store gene symbols.
# From the preview, "ID" matches the probe IDs, and "GENE_SYMBOL" corresponds to gene symbols.
# 2. Create a mapping dataframe from the gene_annotation by extracting the probe ID column and gene symbol column.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
# 3. Convert the probe-level data to gene-level data using the mapping, distributing expression among genes if a probe
# maps to multiple genes, and summing across probes for the same gene.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (Optional) Print a brief check of the new gene_data
print("Gene data shape after mapping:", gene_data.shape)
print("First 20 genes after mapping:", gene_data.index[:20])
# STEP 7
# 1. Normalize gene symbols in the gene_data, then save to CSV.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait and demographic features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Conduct final validation and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Trait is available. Completed linking and QC steps."
)
# 6. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file) |