File size: 6,588 Bytes
0db4514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cervical_Cancer"
cohort = "GSE138080"

# Input paths
in_trait_dir = "../DATA/GEO/Cervical_Cancer"
in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE138080"

# Output paths
out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE138080.csv"
out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE138080.csv"
out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE138080.csv"
json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step: Dataset Analysis and Clinical Feature Extraction

# 1. Determine if the dataset likely contains gene expression data
is_gene_available = True  # Based on the "mRNA tissues-Agilent" description

# 2. Determine availability of variables and write conversion functions

# From the sample characteristics:
# {0: ['cell type: normal cervical squamous epithelium',
#      'cell type: cervical intraepithelial neoplasia, grade 2-3',
#      'cell type: cervical squamous cell carcinoma'],
#  1: ['hpv: high-risk HPV-positive',
#      'hpv: HPV-negative']}

# Observing these, row 0 contains different states of cervical tissue,
# which we interpret as relevant to the trait "Cervical_Cancer."
# Hence we set:
trait_row = 0

# There is no row indicating age, so:
age_row = None

# There is no row indicating gender, so:
gender_row = None

# Data Type Conversion Functions
def convert_trait(value: str):
    # Extract the text after the colon if present
    parts = value.split(':', 1)
    val = parts[1].strip().lower() if len(parts) == 2 else value.strip().lower()
    # Convert to binary (0 = normal, 1 = pre-cancer or cancer)
    if "normal" in val:
        return 0
    elif "intraepithelial" in val or "carcinoma" in val:
        return 1
    return None

def convert_age(value: str):
    # Not used since age is unavailable
    return None

def convert_gender(value: str):
    # Not used since gender is unavailable
    return None

# 3. Perform initial filtering and save metadata
# Trait data is available if trait_row is not None
is_trait_available = (trait_row is not None)

is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction if trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Preview dataframe
    preview = preview_df(selected_clinical_df, n=5, max_items=200)
    print("Preview of selected clinical features:", preview)

    # Save the clinical data
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("These numeric entries appear to be probe IDs or some numeric references, not standard human gene symbols.\nrequires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Determine which columns in gene_annotation match the probe IDs in gene_data and which store gene symbols.
#    From the preview, "ID" matches the probe IDs, and "GENE_SYMBOL" corresponds to gene symbols.

# 2. Create a mapping dataframe from the gene_annotation by extracting the probe ID column and gene symbol column.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")

# 3. Convert the probe-level data to gene-level data using the mapping, distributing expression among genes if a probe
#    maps to multiple genes, and summing across probes for the same gene.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Print a brief check of the new gene_data
print("Gene data shape after mapping:", gene_data.shape)
print("First 20 genes after mapping:", gene_data.index[:20])
# STEP 7

# 1. Normalize gene symbols in the gene_data, then save to CSV.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait and demographic features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Conduct final validation and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Trait is available. Completed linking and QC steps."
)

# 6. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file)