File size: 7,200 Bytes
0db4514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Colon_and_Rectal_Cancer"
cohort = "GSE46517"
# Input paths
in_trait_dir = "../DATA/GEO/Colon_and_Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Colon_and_Rectal_Cancer/GSE46517"
# Output paths
out_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/GSE46517.csv"
out_gene_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/gene_data/GSE46517.csv"
out_clinical_data_file = "./output/preprocess/1/Colon_and_Rectal_Cancer/clinical_data/GSE46517.csv"
json_path = "./output/preprocess/1/Colon_and_Rectal_Cancer/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background info: "RNA was extracted and run on the ... microarray chip"
# This indicates standard gene expression data is very likely available.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# We look for the trait "Colon_and_Rectal_Cancer" in the sample characteristics.
# No rows show consistent data indicating colon/rectal cancer as the primary trait.
# Therefore, we consider that trait data is NOT available.
trait_row = None
# For age: row 7 contains multiple entries of "age at time of resection: ...",
# indicating distinct numeric values. Thus, age data is available at row 7.
age_row = 7
# For gender: row 8 has both "gender: male" and "gender: female", hence it
# carries at least two distinct values. So let's use row 8 for gender.
gender_row = 8
# 2.2 Data Type Conversion
def convert_trait(raw_value: str) -> int:
"""
Since trait data is not available (trait_row=None),
this function is not expected to be called.
However, we define a stub to maintain consistency.
"""
return None
def convert_age(raw_value: str) -> float:
"""
Convert age string (e.g. 'age at time of resection: 72y 4m')
to a numeric value in years (float). If parsing fails, return None.
"""
try:
# The value after the colon might look like '72y 4m'
# We'll extract that part and parse the years.
value_part = raw_value.split(':', 1)[-1].strip() # '72y 4m'
# Split on space => ['72y', '4m'] or just one piece if months missing
parts = value_part.split()
# The first part is something like '72y'
year_str = parts[0].lower().replace('y', '')
year_val = float(year_str)
return year_val
except Exception:
return None
def convert_gender(raw_value: str) -> int:
"""
Convert gender string (e.g. 'gender: male' or 'gender: female')
to a binary (female=0, male=1). If parsing fails, return None.
"""
try:
value_part = raw_value.split(':', 1)[-1].strip().lower() # 'male' or 'female'
if value_part == 'female':
return 0
elif value_part == 'male':
return 1
else:
return None
except Exception:
return None
# 3. Save Metadata
# Perform initial filtering. Trait is not available, so is_trait_available=False.
# This dataset will fail initial filtering due to missing trait, but we still log metadata.
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# We only do this if trait_row is not None. Here, trait_row = None, so we skip extraction.
# End of this step.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The gene identifiers resemble Affymetrix probe set IDs, which are not official gene symbols.
# Therefore, these identifiers will need to be mapped to gene symbols.
print("\nrequires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. From the annotation preview, we see 'ID' corresponds to the probe ids in gene_data.index,
# and 'Gene Symbol' holds the corresponding gene symbols.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
# 2. Convert probe-level measurements to gene-level expression by applying the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print a brief summary to confirm successful mapping
print("Gene-level expression data dimensions:", gene_data.shape)
# STEP7
# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# According to previous steps, we found that trait data is not available (trait_row was None),
# so is_trait_available is False.
is_trait_available = False
if not is_trait_available:
# 5. Conduct final validation to record metadata. Since we have no trait data, the dataset won't be usable.
# We must provide 'df' and 'is_biased' to the function; passing an empty DataFrame and is_biased=True
# ensures it is marked as not usable.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # We do have gene data
is_trait_available=False, # Trait is not available
is_biased=True, # This will mark it as not usable
df=pd.DataFrame(), # Placeholder DataFrame
note="Trait data not available; dataset is not usable."
)
# Since trait is unavailable, we must skip linking or saving any final linked data.
else:
# If trait data were available, we would proceed with linking and further steps.
# But since it is not, this branch is never entered.
pass |