File size: 2,757 Bytes
0db4514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Congestive_heart_failure"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/1/Congestive_heart_failure/TCGA.csv"
out_gene_data_file = "./output/preprocess/1/Congestive_heart_failure/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/1/Congestive_heart_failure/clinical_data/TCGA.csv"
json_path = "./output/preprocess/1/Congestive_heart_failure/cohort_info.json"

import os
import re
import pandas as pd

# 1. Identify a suitable subdirectory for "Congestive_heart_failure"
subdirs = [
    'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
    'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
    'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
    'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
    'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
    'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
    'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
    'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
    'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
    'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
    'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
    'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
    'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
]

# Look for any directories that match strings associated with "Congestive_heart_failure"
candidate_subdirs = [s for s in subdirs if re.search(r'(heart|cardiac|failure)', s, re.IGNORECASE)]

if not candidate_subdirs:
    # 2. No suitable directory; skip this trait
    print("No matching subdirectory found for Congestive_heart_failure. Skipping this trait.")
else:
    # If a match was found (unlikely in this list), proceed with loading
    chosen_subdir = candidate_subdirs[0]
    cohort_dir = os.path.join(tcga_root_dir, chosen_subdir)

    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

    clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
    genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

    print("Clinical Data Columns:", clinical_df.columns.tolist())