File size: 4,094 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE121291"
# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121291"
# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE121291.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - the dataset contains microarray mRNA data according to series title
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# All samples are AML cell line - constant trait value
trait_row = None
# No age data available
age_row = None
# No gender data available since this is cell line data
gender_row = None
def convert_trait(x):
# Convert AML status to binary
# If contains "Acute Myeloid Leukemia", return 1
if isinstance(x, str) and "Acute Myeloid Leukemia" in x:
return 1
return None
def convert_age(x):
pass
def convert_gender(x):
pass
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Skip clinical feature extraction since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(gene_data.index[:20])
# The gene identifiers look like Affymetrix probe IDs (format: digit+_at/s_at/x_at)
# These need to be mapped to gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# 1. Observe columns - 'ID' for probe identifiers matching gene expression data, 'Gene Symbol' for gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Get mapping between probe IDs and gene symbols
mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply mapping to convert probe expression to gene expression
gene_data = apply_gene_mapping(gene_data, mapping)
# Preview the first few gene IDs to verify the mapping worked
print("First 20 mapped gene symbols:")
print(gene_data.index[:20])
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Create minimal linked data with just gene expression data
linked_data = gene_data.T
# Add trait column initialized to None
linked_data[trait] = None
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Check for biased features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data from cell lines but lacks AML trait information needed for analysis."
) |