File size: 4,637 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE121431"
# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121431"
# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE121431.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on the background info, this appears to be gene expression data of AML cell lines
# 2. Variable Availability and Data Type Conversion
# For trait: Can infer from Feature 0 (disease state)
trait_row = 0
def convert_trait(value):
if not isinstance(value, str):
return None
value = value.lower().split(': ')[-1]
if 'acute myeloid leukemia' in value or 'aml' in value:
return 1
return None
# For age: Not available as this is cell line data
age_row = None
def convert_age(value):
return None
# For gender: Not available as this is cell line data
gender_row = None
def convert_gender(value):
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview_result = preview_df(clinical_df)
print("Preview of clinical data:", preview_result)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(gene_data.index[:20])
# These are probe IDs from Affymetrix arrays that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# 1. & 2. Extract gene mapping from annotation
# ID column matches probe identifiers in gene expression data
# Gene Symbol column contains the corresponding gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate data quality and save metadata
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
# based on cell subtypes (AMKL vs non-AMKL).
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |