File size: 5,569 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE161532"
# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE161532"
# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE161532.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - uses Affymetrix Human Transcriptome Array 2.0 for gene expression profiling
is_gene_available = True
# 2.1 Data Availability
# trait - disease state from feature 4 contains AML status
trait_row = 4
# age - age data available in feature 1
age_row = 1
# gender - gender data available in feature 2
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
# All samples have AML, but we can distinguish primary vs secondary
if "de novo" in x.lower():
return 0 # Primary AML
elif any(t in x.lower() for t in ["secondary", "t-aml"]):
return 1 # Secondary AML
elif "aml" in x.lower():
return None # AML but type unknown
return None
def convert_age(x):
if not isinstance(x, str):
return None
try:
age = float(x.split(":")[1].strip())
return age
except:
return None
def convert_gender(x):
if not isinstance(x, str):
return None
x = x.lower()
if "female" in x:
return 0
elif "male" in x:
return 1
return None
# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features since trait_row is available
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the clinical data
print("Preview of clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(gene_data.index[:20])
# These identifiers appear to be microarray probe IDs from Agilent platform ending in "_st"
# They are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Looking at the gene expression data from step 3, the IDs end with "_st"
# Looking at the annotation data, the gene_assignment column contains gene names/symbols
# However, we need to extract the symbols from the complex assignments
# Extract probe IDs and gene assignments, and get mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
# Apply mapping to get gene-level expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate data quality and save metadata
# Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined
# based on cell subtypes (AMKL vs non-AMKL).
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |