File size: 6,315 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE222169"
# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222169"
# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222169.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Given information about leukemia cell lines suggests this is likely gene expression data
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identification
trait_row = 0 # Contains AML information in 'cell line' and 'tissue source' fields
age_row = None # Age information not available
gender_row = None # Gender information not available
# 2.2 Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait values to binary: 1 for AML cases"""
if pd.isna(value):
return None
value = value.split(': ')[-1].lower()
# Both cell lines and patient samples are AML cases
if 'aml' in value or 'molm-14' in value or 'oci-aml2' in value:
return 1
return None
def convert_age(value: str) -> float:
"""Placeholder function - age data not available"""
return None
def convert_gender(value: str) -> int:
"""Placeholder function - gender data not available"""
return None
# 3. Save metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical))
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(gene_data.index[:20])
# The identifiers appear to be transcript cluster IDs from Affymetrix Clariom D arrays
# They need to be mapped to human gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Looking at the example values in SPOT_ID.1, we can find gene symbols within parentheses
# followed by ']', like '(OR4F5)', '(SAMD11)', etc.
# Create a custom function to extract gene symbols from complex text descriptions
def extract_gene_symbols_from_desc(text):
"""Extract gene symbols from complex annotation text that follows format:
... (SYMBOL) [gene_biotype ...
"""
if pd.isna(text):
return []
# Split on '//' to get separate entries and look for gene symbol pattern
# Gene symbols typically appear in parentheses before [gene_biotype
symbols = []
entries = text.split('//')
for entry in entries:
# Look for text in parentheses followed by [gene_biotype
match = re.search(r'\(([^)]+)\)\s*\[gene_biotype', entry)
if match:
symbol = match.group(1)
# Some entries have additional text like "(Drosophila)" - remove that
symbol = re.sub(r'\s*\([^)]+\)$', '', symbol)
symbols.append(symbol)
return list(set(symbols)) # Remove duplicates
# Add a column with extracted gene symbols
gene_annotation['Gene'] = gene_annotation['SPOT_ID.1'].apply(extract_gene_symbols_from_desc)
# Get mapping between IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene')
# Apply gene mapping to convert probe-level data to gene-level expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical data from previous step
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=0, # Using first row containing cell line info
convert_trait=convert_trait, # Using previously defined convert_trait function
age_row=None,
convert_age=None,
gender_row=None,
convert_gender=None
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data comparing different AML cell lines and treatments."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |