File size: 6,315 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE222169"

# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222169"

# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222169.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Given information about leukemia cell lines suggests this is likely gene expression data

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identification
trait_row = 0  # Contains AML information in 'cell line' and 'tissue source' fields
age_row = None  # Age information not available
gender_row = None  # Gender information not available

# 2.2 Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait values to binary: 1 for AML cases"""
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].lower()
    # Both cell lines and patient samples are AML cases
    if 'aml' in value or 'molm-14' in value or 'oci-aml2' in value:
        return 1
    return None

def convert_age(value: str) -> float:
    """Placeholder function - age data not available"""
    return None

def convert_gender(value: str) -> int:
    """Placeholder function - gender data not available"""
    return None

# 3. Save metadata
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(selected_clinical))
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(gene_data.index[:20])
# The identifiers appear to be transcript cluster IDs from Affymetrix Clariom D arrays
# They need to be mapped to human gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Looking at the example values in SPOT_ID.1, we can find gene symbols within parentheses
# followed by ']', like '(OR4F5)', '(SAMD11)', etc.
# Create a custom function to extract gene symbols from complex text descriptions
def extract_gene_symbols_from_desc(text):
    """Extract gene symbols from complex annotation text that follows format:
    ... (SYMBOL) [gene_biotype ...
    """
    if pd.isna(text):
        return []
    # Split on '//' to get separate entries and look for gene symbol pattern
    # Gene symbols typically appear in parentheses before [gene_biotype 
    symbols = []
    entries = text.split('//')
    for entry in entries:
        # Look for text in parentheses followed by [gene_biotype
        match = re.search(r'\(([^)]+)\)\s*\[gene_biotype', entry)
        if match:
            symbol = match.group(1)
            # Some entries have additional text like "(Drosophila)" - remove that
            symbol = re.sub(r'\s*\([^)]+\)$', '', symbol)
            symbols.append(symbol)
    return list(set(symbols))  # Remove duplicates

# Add a column with extracted gene symbols
gene_annotation['Gene'] = gene_annotation['SPOT_ID.1'].apply(extract_gene_symbols_from_desc)

# Get mapping between IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene')

# Apply gene mapping to convert probe-level data to gene-level expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical data from previous step
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=0,  # Using first row containing cell line info
    convert_trait=convert_trait,  # Using previously defined convert_trait function
    age_row=None,
    convert_age=None, 
    gender_row=None,
    convert_gender=None
)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression data comparing different AML cell lines and treatments."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)