File size: 4,031 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Acute_Myeloid_Leukemia"
cohort = "GSE222616"
# Input paths
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222616"
# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222616.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222616.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - it uses HuGene 1.0 ST Affymetrix arrays for gene expression profiling
is_gene_available = True
# 2.1 Data Availability
# trait (AML status) is constant since all samples are from HL-60 AML cell line
trait_row = None
# Age is not available for cell line data
age_row = None
# Gender is not available for cell line data
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
# Not needed since trait data is not available
return None
def convert_age(value):
# Not needed since age data is not available
return None
def convert_gender(value):
# Not needed since gender data is not available
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Skip since trait_row is None (no clinical data available)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Based on biomedical review: The identifiers appear to be numerical probe IDs from an array platform
# rather than standardized human gene symbols. These would need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Extract gene mapping information
probe_col = "ID"
gene_col = "gene_assignment"
mapping_data = gene_annotation[[probe_col, gene_col]]
mapping_data = mapping_data.dropna()
mapping_data = mapping_data.rename(columns={probe_col: 'ID', gene_col: 'Gene'})
mapping_data['Gene'] = mapping_data['Gene'].apply(extract_human_gene_symbols)
# Convert probe-level data to gene-level expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols to handle synonyms
gene_data = normalize_gene_symbols_in_index(gene_data)
# 1. Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# Since no clinical data is available, use gene data as final dataset
# Set is_biased=False since we cannot assess bias without trait data
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False, # Cannot be biased without trait data
df=gene_data,
note="Only gene expression data available, no clinical information found"
)
# Save gene data as final data since no clinical data to link
if is_usable:
gene_data.to_csv(out_data_file) |