File size: 5,340 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Acute_Myeloid_Leukemia"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json"

# 1. Select the relevant subdirectory for acute myeloid leukemia
subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
cohort_dir = os.path.join(tcga_root_dir, subdirectory)

# 2. Get the file paths 
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Identify candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']

# Use TCGA project code LAML instead of full trait name
cohort_dir = os.path.join(tcga_root_dir, "LAML")
if not os.path.exists(cohort_dir):
    print(f"Error: Directory not found: {cohort_dir}")
    print("Please verify the data directory structure and path configuration.")
else:
    clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
    clinical_df = pd.read_csv(clinical_file_path, index_col=0)
    
    # Preview age columns 
    age_preview = {}
    for col in candidate_age_cols:
        age_preview[col] = clinical_df[col].head(5).tolist()
    print("Age columns preview:", age_preview)
    
    # Preview gender columns
    gender_preview = {}
    for col in candidate_gender_cols:
        gender_preview[col] = clinical_df[col].head(5).tolist()
    print("\nGender columns preview:", gender_preview)
# Build the cohort directory path
cohort_dir = os.path.join(tcga_root_dir, "LAML")

# Get the clinical file path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)

# Read clinical data
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)

# Default to None 
age_col = None 
gender_col = None

# Search for age column - look for common patterns
age_candidates = [col for col in clinical_df.columns if 'age' in col.lower()]
if age_candidates:
    # Preview first few values of each candidate
    for col in age_candidates:
        preview = clinical_df[col].head()
        # Check if column has numeric age values after conversion
        converted = preview.apply(tcga_convert_age)
        if not converted.isna().all():
            age_col = col
            break

# Search for gender column - look for common patterns  
gender_candidates = [col for col in clinical_df.columns if 'gender' in col.lower() or 'sex' in col.lower()]
if gender_candidates:
    # Preview first few values of each candidate
    for col in gender_candidates:
        preview = clinical_df[col].head()
        # Check if column has valid gender values after conversion
        converted = preview.apply(tcga_convert_gender)
        if not converted.isna().all():
            gender_col = col
            break

# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Select the relevant subdirectory for acute myeloid leukemia
subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
cohort_dir = os.path.join(tcga_root_dir, subdirectory)

# 2. Get the file paths 
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# 1. Extract and standardize clinical features
# First create trait labels using sample IDs, then add demographics if available
clinical_features = tcga_select_clinical_features(
    clinical_df, 
    trait=trait,
    age_col='age_at_initial_pathologic_diagnosis',
    gender_col='gender'
)

# 2. Normalize gene symbols and save
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data
linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1)

# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Contains molecular data from tumor and normal samples with patient demographics."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)