File size: 6,548 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Adrenocortical_Cancer"
cohort = "GSE19776"
# Input paths
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776"
# Output paths
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE19776.csv"
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE19776.csv"
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE19776.csv"
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and extensive disease/tumor grade info, this appears to be a gene expression study
is_gene_available = True
# 2.1 Data Availability
# Trait (cancer stage) available in Feature 1 - extent of disease
trait_row = 1
# Age available in Feature 5
age_row = 5
# Gender available in Feature 4
gender_row = 4
# 2.2 Data Type Conversion Functions
def convert_trait(val: str) -> int:
"""Convert extent of disease to binary (0=localized, 1=advanced)"""
if not val or 'Unknown' in val:
return None
val = val.split(': ')[1].strip()
if val == 'Localized':
return 0
elif val in ['Regional', 'Metastatic']:
return 1
return None
def convert_age(val: str) -> float:
"""Convert age to float"""
if not val or 'Unknown' in val:
return None
try:
return float(val.split(': ')[1])
except:
return None
def convert_gender(val: str) -> int:
"""Convert gender to binary (0=F, 1=M)"""
if not val:
return None
val = val.split(': ')[1].strip()
if val == 'F':
return 0
elif val == 'M':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the data, we see numeric IDs (3,4,5,8,9 etc) being used as identifiers
# These are not standard human gene symbols, which are typically alphanumeric (e.g. TP53, BRCA1)
# Therefore mapping will be required to convert these IDs to gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'Gene Symbol' column: Contains gene symbol information")
# Get probe-to-gene mapping from annotation data
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy()
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'})
# Convert IDs to string type and remove any leading/trailing whitespace
mapping_df['ID'] = mapping_df['ID'].astype(str).str.strip()
gene_data.index = gene_data.index.str.strip()
# Filter annotation data to match numeric probe IDs only
mapping_df = mapping_df[mapping_df['ID'].str.match(r'^\d+$')]
# Apply mapping to convert probe-level data to gene expression data
# Note: Each probe's expression will be divided among its target genes, then summed per gene
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols before saving
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Shape after mapping probes to genes:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Skip data linking since gene mapping failed
linked_data = pd.DataFrame() # Empty dataframe since no valid gene data
# Validate and save cohort info indicating the data is not usable
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Set to False since gene mapping failed
is_trait_available=True, # Clinical data was successfully extracted
is_biased=True, # No valid data to analyze
df=linked_data,
note="Gene mapping failed - numeric probe IDs in expression data did not match Affymetrix IDs in annotation"
) |