File size: 6,548 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Adrenocortical_Cancer"
cohort = "GSE19776"

# Input paths
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776"

# Output paths
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE19776.csv"
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE19776.csv"
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE19776.csv"
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability 
# Based on series title and extensive disease/tumor grade info, this appears to be a gene expression study
is_gene_available = True

# 2.1 Data Availability
# Trait (cancer stage) available in Feature 1 - extent of disease
trait_row = 1  

# Age available in Feature 5
age_row = 5

# Gender available in Feature 4
gender_row = 4

# 2.2 Data Type Conversion Functions
def convert_trait(val: str) -> int:
    """Convert extent of disease to binary (0=localized, 1=advanced)"""
    if not val or 'Unknown' in val:
        return None
    val = val.split(': ')[1].strip()
    if val == 'Localized':
        return 0
    elif val in ['Regional', 'Metastatic']:
        return 1
    return None

def convert_age(val: str) -> float:
    """Convert age to float"""
    if not val or 'Unknown' in val:
        return None
    try:
        return float(val.split(': ')[1])
    except:
        return None

def convert_gender(val: str) -> int:
    """Convert gender to binary (0=F, 1=M)"""
    if not val:
        return None
    val = val.split(': ')[1].strip()
    if val == 'F':
        return 0
    elif val == 'M':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

print("Preview of selected clinical features:")
print(preview_df(selected_clinical))

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Looking at the data, we see numeric IDs (3,4,5,8,9 etc) being used as identifiers
# These are not standard human gene symbols, which are typically alphanumeric (e.g. TP53, BRCA1)
# Therefore mapping will be required to convert these IDs to gene symbols

requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'Gene Symbol'):")
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'Gene Symbol' column: Contains gene symbol information")
# Get probe-to-gene mapping from annotation data
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy()
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'})

# Convert IDs to string type and remove any leading/trailing whitespace 
mapping_df['ID'] = mapping_df['ID'].astype(str).str.strip()
gene_data.index = gene_data.index.str.strip()

# Filter annotation data to match numeric probe IDs only
mapping_df = mapping_df[mapping_df['ID'].str.match(r'^\d+$')]

# Apply mapping to convert probe-level data to gene expression data
# Note: Each probe's expression will be divided among its target genes, then summed per gene
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Normalize gene symbols before saving 
gene_data = normalize_gene_symbols_in_index(gene_data)

print("Shape after mapping probes to genes:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Skip data linking since gene mapping failed
linked_data = pd.DataFrame()  # Empty dataframe since no valid gene data

# Validate and save cohort info indicating the data is not usable
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=False,  # Set to False since gene mapping failed
    is_trait_available=True,  # Clinical data was successfully extracted
    is_biased=True,  # No valid data to analyze
    df=linked_data,
    note="Gene mapping failed - numeric probe IDs in expression data did not match Affymetrix IDs in annotation"
)