File size: 5,861 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Adrenocortical_Cancer"
cohort = "GSE49278"

# Input paths
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE49278"

# Output paths
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE49278.csv"
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE49278.csv"
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE49278.csv"
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - Affymetrix Human Gene 2.0 ST Array data mentioned in background info
is_gene_available = True

# 2. Variable Availability and Row Identification
trait_row = 2  # Cell type row contains ACC info
age_row = 0    # Age data available 
gender_row = 1 # Gender data available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert cell type to binary where ACC=1"""
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].strip().lower()
    if 'adrenocortical carcinoma' in value:
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age to continuous numeric value"""
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].strip()
    try:
        return float(value)
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary where F=0, M=1"""
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].strip().upper()
    if value == 'F':
        return 0
    elif value == 'M':
        return 1
    return None

# 3. Save initial metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False, 
                                cohort=cohort,
                                info_path=json_path,
                                is_gene_available=is_gene_available,
                                is_trait_available=is_trait_available)

# 4. Extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers appear to be numeric probe IDs (16650001, etc)
# which are not human gene symbols and will need to be mapped
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# First inspect the SOFT file contents to understand the annotation format
import gzip
print("Inspecting SOFT file for gene mapping information:")
pattern = None
with gzip.open(soft_file, 'rt') as f:
    for i, line in enumerate(f):
        if i < 100:  # Check first 100 lines
            if "gene_assignment" in line or "gene_symbol" in line:
                print(f"\nFound gene mapping pattern in line: {line.strip()}")
                pattern = line
            elif "transcript_id" in line or "mrna_assignment" in line:
                print(f"\nFound alternative mapping pattern in line: {line.strip()}")
                pattern = line
        else:
            break

# Based on file inspection, extract gene annotation with appropriate prefixes
gene_annotation = get_gene_annotation(soft_file, prefixes=['#', '!platform_table_begin', '!platform_table_end'])

# Preview gene annotation data structure
print("\nGene annotation shape:", gene_annotation.shape)
print("\nAvailable columns:")
print(gene_annotation.columns.tolist())

# Display a few rows of relevant mapping columns 
mapping_cols = [col for col in gene_annotation.columns if 'gene' in col.lower() 
                or 'symbol' in col.lower() 
                or 'transcript' in col.lower()
                or col == 'ID']
if mapping_cols:
    print("\nPreview of mapping-related columns:")
    print(gene_annotation[mapping_cols].head())
else:
    print("\nNo obvious gene mapping columns found. Displaying first row:")
    print(gene_annotation.iloc[0])