File size: 7,715 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Adrenocortical_Cancer"
cohort = "GSE67766"
# Input paths
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE67766"
# Output paths
out_data_file = "./output/preprocess/3/Adrenocortical_Cancer/GSE67766.csv"
out_gene_data_file = "./output/preprocess/3/Adrenocortical_Cancer/gene_data/GSE67766.csv"
out_clinical_data_file = "./output/preprocess/3/Adrenocortical_Cancer/clinical_data/GSE67766.csv"
json_path = "./output/preprocess/3/Adrenocortical_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# First extract background info and subseries info
background_info, _ = get_background_and_clinical_data(matrix_file,
prefixes_a=['!Series_title', '!Series_summary',
'!Series_overall_design', '!Series_type',
'!Series_relation'],
prefixes_b=None)
print("Initial Dataset Information:")
print(background_info)
print("\nChecking for subseries...\n")
# If SuperSeries, get the constituent series accession
subseries = None
if 'SuperSeries' in background_info:
for line in background_info.split('\n'):
if '!Series_relation\t' in line:
matches = re.finditer(r'GSE\d+', line)
for match in matches:
potential_subseries = match.group(0)
if potential_subseries != cohort: # Skip if it's the SuperSeries ID
subseries_dir = os.path.join(in_trait_dir, potential_subseries)
if os.path.exists(subseries_dir):
print(f"Found valid subseries: {potential_subseries}")
subseries = potential_subseries
break
# If subseries found, update directory path and get new files
if subseries:
in_cohort_dir = os.path.join(in_trait_dir, subseries)
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
print(f"\nUsing subseries data from: {in_cohort_dir}\n")
else:
print("\nNo valid subseries found, using original data\n")
# Extract background info and clinical data from final files
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print final dataset information
print("Final Dataset Information:")
print(f"{background_info}\n")
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on !Series_type, which includes "Expression profiling by array" and "Expression profiling by high throughput sequencing"
# this dataset likely contains gene expression data
is_gene_available = True
# 2.1 Data Availability
# Looking at sample characteristics:
# Row 0 shows "cell line: SW-13" - this indicates cell line data, not clinical samples
# No rows for trait, age or gender found
trait_row = None
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
# Although not used since data is unavailable, define placeholder functions
def convert_trait(x):
if x is None or pd.isna(x):
return None
value = str(x).split(':')[-1].strip()
# Binary conversion would go here
return None
def convert_age(x):
if x is None or pd.isna(x):
return None
value = str(x).split(':')[-1].strip()
# Numeric conversion would go here
return None
def convert_gender(x):
if x is None or pd.isna(x):
return None
value = str(x).split(':')[-1].strip().lower()
# Gender binary conversion would go here
return None
# 3. Save Metadata
# trait_row is None so is_trait_available is False
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False)
# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the identifiers starting with "ILMN_", these are Illumina probe IDs
# They need to be mapped to official gene symbols to be interpretable in analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'Symbol'):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'Symbol']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'Symbol' column: Contains gene symbol information")
# 1. Based on previous output:
# Gene expression data uses 'ILMN_*' identifiers as index
# Gene annotation data has matching IDs in 'ID' column and gene symbols in 'Symbol' column
# 2. Extract mapping between probe IDs and gene symbols
mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3. Apply gene mapping to convert probe-level measurements to gene expression
gene_data = apply_gene_mapping(gene_data, mapping)
# Print info about the mapping results
print("Shape of probe-level data:", gene_data.shape)
print("\nShape after mapping to genes:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
print("\nFirst few gene symbols:")
print(gene_data.index[:10])
# 1. Normalize and save gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2-4. Skip clinical data linking and bias checking since no clinical data exists
# 5. Update cohort info to reflect dataset is not usable due to lack of trait data
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Cell line data is considered biased for human trait analysis
df=gene_data, # Provide gene expression data
note="Dataset contains only cell line data (SW-13) without clinical information"
)
# 6. Skip saving linked data since dataset is not usable for trait analysis |