File size: 5,919 Bytes
a0b62f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE182600"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600"

# Output paths
out_data_file = "./output/preprocess/3/Arrhythmia/GSE182600.csv"
out_gene_data_file = "./output/preprocess/3/Arrhythmia/gene_data/GSE182600.csv"
out_clinical_data_file = "./output/preprocess/3/Arrhythmia/clinical_data/GSE182600.csv"
json_path = "./output/preprocess/3/Arrhythmia/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Yes, this dataset contains gene expression data from PBMCs

# 2. Variable Availability and Data Type Conversion
trait_row = 3  # 'outcome' row contains binary outcome data
age_row = 1    # 'age' row contains continuous age values  
gender_row = 2 # 'gender' row contains binary gender data

def convert_trait(value: str) -> int:
    """Convert outcome status to binary: Success=1, Failure=0"""
    if not value:
        return None
    value = value.split(': ')[-1].lower()
    if value == 'success':
        return 1
    elif value in ['failure', 'fail']:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if not value:
        return None
    try:
        return float(value.split(': ')[-1])
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: F=0, M=1"""
    if not value:
        return None
    value = value.split(': ')[-1].upper()
    if value == 'F':
        return 0
    elif value == 'M':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(selected_clinical_df)
    print("Preview of processed clinical data:")
    print(preview)
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# ILMN_ prefix indicates these are Illumina microarray probe IDs, not gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Get gene mapping between probe IDs (ID) and gene symbols (Symbol)
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview result to verify mapping worked correctly
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few mapped gene symbols:")
print(gene_data.index[:10])
print("\nFirst few rows of expression data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)