File size: 7,732 Bytes
a0b62f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE53622"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE53622"

# Output paths
out_data_file = "./output/preprocess/3/Arrhythmia/GSE53622.csv"
out_gene_data_file = "./output/preprocess/3/Arrhythmia/gene_data/GSE53622.csv"
out_clinical_data_file = "./output/preprocess/3/Arrhythmia/clinical_data/GSE53622.csv"
json_path = "./output/preprocess/3/Arrhythmia/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# Step 1: Gene expression data availability 
# Based on the series title and summary, this is a lncRNA microarray study
# lncRNA is a type of gene expression data, so it is suitable
is_gene_available = True

# Step 2.1: Identify data rows
trait_row = 10  # Arrhythmia data in row 10
age_row = 1   # Age data in row 1 
gender_row = 2  # Gender data in row 2

# Step 2.2: Define conversion functions
def convert_trait(x):
    # Convert arrhythmia values to binary (no:0, yes:1)
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if value == 'no':
        return 0
    elif value == 'yes':
        return 1
    return None

def convert_age(x):
    # Convert age to float
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[-1])
    except:
        return None

def convert_gender(x):
    # Convert gender to binary (female:0, male:1)
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# Step 3: Save metadata for initial filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# Step 4: Extract clinical features since trait data is available
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of extracted clinical features:")
    print(preview_df(selected_clinical))
    
    # Save to file
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the gene identifiers showing simple numeric values (1,2,24,25,26 etc)
# and the very high number of rows (71584), these appear to be probe IDs from a 
# microarray platform rather than direct gene symbols. They will need to be mapped
# to standard gene symbols.

requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file by filtering out lines with prefixes
gene_annotation = get_gene_annotation(soft_file)

# Print platform information and key columns
print("Platform Information:")
with gzip.open(soft_file, 'rt') as f:
    for line in f:
        if '!Platform_title' in line or '!Platform_geo_accession' in line:
            print(line.strip())

# Download and read platform annotation file from GEO
import urllib.request
import io

# Download GPL18109 platform annotation
platform_url = "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?mode=raw&is_datatable=true&acc=GPL18109&id=18415&db=GeoDb_blob118"
response = urllib.request.urlopen(platform_url)
platform_data = response.read().decode('utf-8')

# Read into dataframe
platform_df = pd.read_csv(io.StringIO(platform_data), sep='\t', comment='#')

print("\nPlatform Annotation Preview:")
print("Column names:", platform_df.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(platform_df))

# Store platform dataframe as our gene annotation
gene_annotation = platform_df
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Read SOFT file content
with gzip.open(soft_file, 'rt') as f:
    platform_content = f.read()

# Extract the platform table section
table_start = platform_content.find("!platform_table_begin")
table_end = platform_content.find("!platform_table_end")
platform_table = platform_content[table_start:table_end]

# Read platform annotation into dataframe
gene_annotation = pd.read_csv(io.StringIO(platform_table), sep='\t', skiprows=1)

# Print column names to identify mapping columns
print("Available columns:", gene_annotation.columns.tolist())
print("\nSample rows:")
print(gene_annotation.head())

# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID_REF', gene_col='GENE')

# Apply mapping to convert probe data to gene expression data 
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)

# Print shape and preview to verify conversion worked
print("\nShape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows after mapping:")
print(gene_data.head())
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file) 

# Print annotation info
print("Looking for gene annotation in file:", soft_file)
print("\nGene Annotation Preview:")
print("Number of rows:", len(gene_annotation))
print("Column names:", gene_annotation.columns.tolist())

# The platform appears to lack complete annotation in the SOFT file
# This is GPL18109 platform which requires special handling
print("\nNOTE: This dataset uses GPL18109 platform (Agilent-038314 CBC Homo sapiens lncRNA + mRNA microarray)")
print("The complete gene mapping information is not available in the SOFT file.")
print("Manual annotation retrieval from GEO is required for this platform.")

# Since automated annotation retrieval failed, we should stop here and inform about manual annotation need
raise ValueError("Gene mapping information not found in SOFT file. Manual annotation retrieval required for GPL18109.")