File size: 9,398 Bytes
324058b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# CD4+ T cells data likely contains gene expression, not just miRNA or methylation
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # 'primary diagnosis' contains trait info
age_row = 3 # 'age' data starts at feature 3 and continues in feature 4
gender_row = 2 # 'Sex' info is in feature 2
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if pd.isna(value):
return None
value = value.split(': ')[1]
# Convert values to binary (0: control, 1: asthma)
if value in ['HEALTHY_CONTROL', 'Control']:
return 0
elif value in ['ASTHMA']:
return 1
return None
def convert_age(value):
if pd.isna(value):
return None
try:
# Extract numeric age value after colon
age = int(value.split(': ')[1])
return age
except:
return None
def convert_gender(value):
if pd.isna(value):
return None
if not value.startswith('Sex:'):
return None
value = value.split(': ')[1]
# Convert to binary (0: female, 1: male)
if value.upper() == 'FEMALE':
return 0
elif value.upper() == 'MALE':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical)
print("Preview of processed clinical data:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers appear to be numeric IDs from 1-24166
# These are not gene symbols and will need mapping
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract platform info from SOFT file line by line
import gzip
import re
platform_lines = []
gene_symbol_lines = []
with gzip.open(soft_file, 'rt') as f:
in_platform_block = False
for line in f:
if line.startswith('!Platform_'):
platform_lines.append(line.strip())
if 'table_begin' in line:
in_platform_block = True
# Skip header line
next(f)
continue
elif 'table_end' in line:
in_platform_block = False
continue
elif in_platform_block:
gene_symbol_lines.append(line.strip())
# Parse platform annotation table
import pandas as pd
import io
platform_table = pd.read_csv(io.StringIO('\n'.join(gene_symbol_lines)), sep='\t')
# Preview annotation data
print("Platform Information:")
for line in platform_lines[:5]:
print(line)
print("\nPlatform Annotation Table Preview:")
print("Column names:", platform_table.columns.tolist())
print("\nFirst few rows:")
print(preview_df(platform_table))
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Look through entire SOFT file for gene symbol information
import gzip
platform_lines = []
gene_table_lines = []
with gzip.open(soft_file, 'rt') as f:
in_gene_table = False
table_found = False
for line in f:
# Keep track of platform lines for debugging
if line.startswith('!Platform_'):
platform_lines.append(line.strip())
if 'table_begin' in line:
in_gene_table = True
# Get header line
header = next(f).strip()
gene_table_lines.append(header)
continue
elif 'table_end' in line:
in_gene_table = False
elif in_gene_table and ('gene_symbol' in line.lower() or 'gene_name' in line.lower() or
'symbol' in line.lower() or 'gene_assignment' in line.lower()):
table_found = True
gene_table_lines.append(line.strip())
print("Platform information:")
for line in platform_lines[:10]:
print(line)
print("\nFirst few gene table lines (if gene symbols found):")
if gene_table_lines:
for line in gene_table_lines[:5]:
print(line)
print("\nSearching for alternative annotation fields...")
# Extract gene annotation trying both methods
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("\nGene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary (showing all columns):")
pd.set_option('display.max_columns', None)
print(gene_annotation.head().to_dict('records'))
# Create mapping dataframe using platform's annotation
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
# Create a list of genes for the Gene column, single gene ID per row
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])
# Apply gene mapping to transform probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Normalize gene symbols to consistent format
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Get file paths and read data
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get gene annotation and expression data
gene_annotation = get_gene_annotation(soft_file)
gene_data = get_genetic_data(matrix_file)
# Clean and create mapping dataframe
gene_annotation = gene_annotation[gene_annotation['ENTREZ_GENE_ID'].str.isnumeric().fillna(False)]
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])
# Apply gene mapping to transform probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Dataset contains gene expression data from CD4+ T cells."
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |