File size: 9,398 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE123088"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE123088"

# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# CD4+ T cells data likely contains gene expression, not just miRNA or methylation
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1  # 'primary diagnosis' contains trait info
age_row = 3  # 'age' data starts at feature 3 and continues in feature 4
gender_row = 2  # 'Sex' info is in feature 2

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if pd.isna(value):
        return None
    value = value.split(': ')[1]
    # Convert values to binary (0: control, 1: asthma)
    if value in ['HEALTHY_CONTROL', 'Control']:
        return 0
    elif value in ['ASTHMA']:
        return 1
    return None

def convert_age(value):
    if pd.isna(value):
        return None
    try:
        # Extract numeric age value after colon
        age = int(value.split(': ')[1])
        return age
    except:
        return None

def convert_gender(value):
    if pd.isna(value):
        return None
    if not value.startswith('Sex:'):
        return None
    value = value.split(': ')[1]
    # Convert to binary (0: female, 1: male)
    if value.upper() == 'FEMALE':
        return 0
    elif value.upper() == 'MALE':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(selected_clinical)
    print("Preview of processed clinical data:")
    print(preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers appear to be numeric IDs from 1-24166
# These are not gene symbols and will need mapping
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract platform info from SOFT file line by line
import gzip
import re
platform_lines = []
gene_symbol_lines = []
with gzip.open(soft_file, 'rt') as f:
    in_platform_block = False
    for line in f:
        if line.startswith('!Platform_'):
            platform_lines.append(line.strip())
            if 'table_begin' in line:
                in_platform_block = True
                # Skip header line
                next(f)
                continue
            elif 'table_end' in line:
                in_platform_block = False
                continue
        elif in_platform_block:
            gene_symbol_lines.append(line.strip())

# Parse platform annotation table
import pandas as pd 
import io

platform_table = pd.read_csv(io.StringIO('\n'.join(gene_symbol_lines)), sep='\t')

# Preview annotation data
print("Platform Information:")
for line in platform_lines[:5]:
    print(line)

print("\nPlatform Annotation Table Preview:")
print("Column names:", platform_table.columns.tolist())
print("\nFirst few rows:")
print(preview_df(platform_table))
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Look through entire SOFT file for gene symbol information
import gzip
platform_lines = []
gene_table_lines = []
with gzip.open(soft_file, 'rt') as f:
    in_gene_table = False
    table_found = False
    for line in f:
        # Keep track of platform lines for debugging
        if line.startswith('!Platform_'):
            platform_lines.append(line.strip())
            if 'table_begin' in line:
                in_gene_table = True
                # Get header line
                header = next(f).strip()
                gene_table_lines.append(header)
                continue
            elif 'table_end' in line:
                in_gene_table = False
        elif in_gene_table and ('gene_symbol' in line.lower() or 'gene_name' in line.lower() or 
                               'symbol' in line.lower() or 'gene_assignment' in line.lower()):
            table_found = True
            gene_table_lines.append(line.strip())

print("Platform information:")
for line in platform_lines[:10]:
    print(line)

print("\nFirst few gene table lines (if gene symbols found):")
if gene_table_lines:
    for line in gene_table_lines[:5]:
        print(line)

print("\nSearching for alternative annotation fields...")
# Extract gene annotation trying both methods
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("\nGene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary (showing all columns):")
pd.set_option('display.max_columns', None)
print(gene_annotation.head().to_dict('records'))
# Create mapping dataframe using platform's annotation
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()

# Create a list of genes for the Gene column, single gene ID per row
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])

# Apply gene mapping to transform probe-level data to gene-level data 
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Normalize gene symbols to consistent format
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Get file paths and read data
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get gene annotation and expression data
gene_annotation = get_gene_annotation(soft_file)
gene_data = get_genetic_data(matrix_file)

# Clean and create mapping dataframe 
gene_annotation = gene_annotation[gene_annotation['ENTREZ_GENE_ID'].str.isnumeric().fillna(False)]
mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna()
mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else [])
mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID'])

# Apply gene mapping to transform probe-level data to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=is_biased,
    df=linked_data,
    note="Dataset contains gene expression data from CD4+ T cells."
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)