File size: 6,127 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE182797"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE182797"

# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE182797.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE182797.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE182797.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and overall design, this dataset contains transcriptomic data from nasal biopsies
is_gene_available = True

# 2.1 Data Availability
# trait data is in Feature 0 (diagnosis)
trait_row = 0

# gender data is in Feature 1 but only contains females
gender_row = None  # Not useful since all subjects are female

# age data is in Feature 2
age_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if 'adult-onset asthma' in value:
        return 1
    elif 'healthy' in value:
        return 0
    return None

def convert_age(x):
    if not isinstance(x, str):
        return None
    try:
        value = x.split(': ')[-1]
        return float(value)
    except:
        return None

def convert_gender(x):
    # This function won't be used but included for completeness
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract clinical features
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age)

# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical))

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# These are Agilent probe identifiers starting with A_19_P, NOT human gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. Based on the dataframes, 'ID' column contains probe identifiers, and 'GENE_SYMBOL' contains gene symbols
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'

# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe-level measurements to gene expression 
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Print dimensions and first few rows to verify the mapping
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Evaluate bias
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)