File size: 4,898 Bytes
324058b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE188424"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE188424"
# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE188424.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE188424.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE188424.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from human blood samples,
# not just miRNA or methylation
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = None # Not available in characteristics dictionary
gender_row = 0 # Gender data is available at index 0
age_row = None # No age data available
# 2.2 Data Type Conversion Functions
def convert_trait(value):
# Won't be used since trait data is not available
return None
def convert_gender(value):
if not isinstance(value, str):
return None
value = value.lower().split(': ')[-1].strip()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
def convert_age(value):
# Won't be used since age data is not available
return None
# 3. Save Metadata - Initial Filtering
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # trait_row is None
)
# 4. Clinical Feature Extraction
# Skip this step since trait_row is None
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# These are Illumina probe IDs (starting with ILMN_) and need to be mapped to gene symbols
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. Identify mapping columns from gene annotation data
# 'ID' column matches the probe IDs (ILMN_) in expression data
# 'Symbol' column contains the gene symbols to map to
prob_col = 'ID'
gene_col = 'Symbol'
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print shape and preview mapped data
print("\nShape of gene-level expression data:", gene_data.shape)
print("\nPreview of gene-level expression data:")
print(gene_data.head())
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Update cohort info - dataset not usable due to missing trait data
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False, # No trait data available
is_biased=True, # Dataset unusable without trait data
df=gene_data, # Pass gene expression data
note="Dataset contains gene expression data but lacks trait information needed for association studies."
) |