File size: 4,816 Bytes
324058b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE230164"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE230164"
# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE230164.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE230164.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE230164.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Since "Gene expression profiling" is mentioned in series title,
# and series summary indicates this is a SuperSeries containing SubSeries,
# this dataset is likely to contain gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Based on sample characteristics, we can find:
# - Gender is available at key 0
# - Trait and age information are not explicitly available
trait_row = None
age_row = None
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(x):
return None # Not available
def convert_age(x):
return None # Not available
def convert_gender(x):
# Extract value after colon and convert to binary
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# 3. Save metadata about data availability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Since trait_row is None, skip clinical feature extraction
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers start with ILMN_ which indicates they are Illumina probe IDs
# These need to be mapped to human gene symbols for standardization
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. Based on the preview, 'ID' in annotation matches probe IDs in expression data (ILMN_*),
# and 'Symbol' contains gene symbols
# 2. Extract ID and Symbol columns to create mapping dataframe
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3. Apply gene mapping to convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Create a minimal DataFrame for validation
linked_data = gene_data.T # Transpose to have samples as rows
# Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # No trait data means it's biased by definition
df=linked_data,
note="Dataset contains gene expression data but lacks required trait information."
) |