File size: 4,816 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE230164"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE230164"

# Output paths
out_data_file = "./output/preprocess/3/Asthma/GSE230164.csv"
out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE230164.csv"
out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE230164.csv"
json_path = "./output/preprocess/3/Asthma/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Since "Gene expression profiling" is mentioned in series title, 
# and series summary indicates this is a SuperSeries containing SubSeries,
# this dataset is likely to contain gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Based on sample characteristics, we can find:
# - Gender is available at key 0
# - Trait and age information are not explicitly available
trait_row = None 
age_row = None
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    return None # Not available

def convert_age(x):
    return None # Not available

def convert_gender(x):
    # Extract value after colon and convert to binary
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save metadata about data availability
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Since trait_row is None, skip clinical feature extraction
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers start with ILMN_ which indicates they are Illumina probe IDs
# These need to be mapped to human gene symbols for standardization
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# 1. Based on the preview, 'ID' in annotation matches probe IDs in expression data (ILMN_*),
# and 'Symbol' contains gene symbols

# 2. Extract ID and Symbol columns to create mapping dataframe
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# 3. Apply gene mapping to convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Create a minimal DataFrame for validation
linked_data = gene_data.T  # Transpose to have samples as rows

# Validate and save cohort info 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,  # No trait data means it's biased by definition
    df=linked_data,
    note="Dataset contains gene expression data but lacks required trait information."
)