File size: 4,477 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE143924"

# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE143924"

# Output paths
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE143924.csv"
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE143924.csv"
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE143924.csv"
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background information, this is a transcriptome analysis study from tissue biopsies
is_gene_available = True

# 2.1 Data Availability
# From sample characteristics, trait data is in row 1 (POAF vs SR)
trait_row = 1
# Age and gender are not available in the sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower()
    if "postoperative atrial fibrillation" in value or "poaf" in value:
        return 1
    elif "sinus rhythm" in value:
        return 0
    return None

def convert_age(value):
    return None  # Not used since age data not available

def convert_gender(value):
    return None  # Not used since gender data not available

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(clinical_df))
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# These appear to be human gene symbols - they follow standard HUGO nomenclature with accepted formats like:
# - Standard gene symbols (e.g. AACS, AADAC)
# - Antisense RNA annotations (-AS1 suffix)
# - Pseudogene annotations (P suffix)
# No mapping needed as they are already in the desired format

requires_gene_mapping = False
# 1. Normalize gene symbols and save gene data
genetic_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Sample size adequate. Gene expression data quality good. Trait is postoperative atrial fibrillation vs sinus rhythm."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)