File size: 5,593 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE235307"

# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE235307"

# Output paths
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE235307.csv"
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE235307.csv"
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE235307.csv"
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# From background info, this is a blood gene expression study
is_gene_available = True

# 2.1 Data Row Identification
trait_row = 5  # cardiac rhythm after 1 year follow-up
age_row = 2    # age is available
gender_row = 1 # gender is available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert AF status to binary: 1 for AF, 0 for sinus rhythm"""
    if value is None:
        return None
    value = value.split(': ')[-1].lower().strip()
    if 'atrial fibrillation' in value:
        return 1
    elif 'sinus rhythm' in value:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to float"""
    if value is None:
        return None
    try:
        return float(value.split(': ')[-1])
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary: 0 for female, 1 for male"""
    if value is None:
        return None
    value = value.split(': ')[-1].lower().strip()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The gene identifiers in this dataset appear to be simple numeric values, 
# which are not standard human gene symbols.
# Standard gene symbols would be like "BRCA1", "TP53", etc
# Therefore mapping is required to convert these to proper gene symbols.

requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. From the preview, 'ID' contains numeric identifiers matching gene expression data,
# and 'GENE_SYMBOL' contains human gene symbols

# 2. Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols in the gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview the mapped gene data
print("\nFirst 20 genes after mapping:")
print(list(gene_data.index[:20]))

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)