File size: 5,570 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE41177"

# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE41177"

# Output paths
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE41177.csv"
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE41177.csv"
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE41177.csv"
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # Dataset contains microarray gene expression data per background info

# 2.1 Data Availability
trait_row = 3  # 'af duration' indicates AF status duration
age_row = 2    # Age data available
gender_row = 1 # Gender data available 

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip()
    # Convert AF duration to binary - any duration indicates AF presence
    if value == '0M':
        return 0
    elif 'M' in value:  # Has months duration
        return 1
    return None

def convert_age(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip()
    if value.endswith('Y'):
        try:
            return float(value[:-1])  # Remove 'Y' and convert to float
        except:
            return None
    return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip().lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save Metadata 
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Extract Clinical Features
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                  trait=trait,
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  age_row=age_row,
                                                  convert_age=convert_age, 
                                                  gender_row=gender_row,
                                                  convert_gender=convert_gender)

# Preview the processed clinical data
print(preview_df(selected_clinical_df))

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# These are Affymetrix probe IDs (starting with numbers and containing "_at"), not human gene symbols
# They need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Get gene mapping dataframe from annotation data
# 'ID' column contains probe IDs matching genetic_data, 'Gene Symbol' contains gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')

# Apply gene mapping to convert from probes to genes
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the first few rows and columns of the mapped gene data
print("\nFirst few rows of mapped gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)