File size: 2,795 Bytes
324058b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE47727"

# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE47727"

# Output paths
out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE47727.csv"
out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE47727.csv"
out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE47727.csv"
json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on the background info mentioning "gene expression" and "HumanHT-12", this is gene expression data
is_gene_available = True

# 2.1 Data Row Identification 
# From characteristics dictionary:
# For trait: no direct AF status, all are controls based on background info
trait_row = None 

# Age is in row 0
age_row = 0

# Gender is in row 1  
gender_row = 1

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # All samples are controls
    return 0

def convert_age(x):
    # Extract numeric age from strings like "age (yrs): 67"
    try:
        age = int(x.split(': ')[1])
        return age
    except:
        return None
        
def convert_gender(x):
    # Convert gender strings to binary (female=0, male=1)
    gender = x.split(': ')[1].lower()
    if gender == 'female':
        return 0
    elif gender == 'male':
        return 1
    return None

# 3. Save initial metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False  # trait_row is None
)

# 4. Extract clinical features
clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted features
print("\nPreview of extracted clinical features:")
print(preview_df(clinical_df))

# Save to CSV
clinical_df.to_csv(out_clinical_data_file)