File size: 7,690 Bytes
3ee376c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Breast_Cancer"
cohort = "GSE249377"
# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE249377"
# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE249377.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE249377.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE249377.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# This is a transcriptomics dataset using MCF7 breast cancer cell line
is_gene_available = True
# 2.1 Variable availability - look at unique values under each feature ID
trait_row = 2 # Treatment status available in Feature 2
age_row = None # No age information
gender_row = None # No gender information - cell line data only
# 2.2 Data type conversion functions
def convert_trait(value: str) -> Optional[int]:
"""Convert treatment data to binary: treated (1) vs untreated (0)"""
if value is None or 'NA' in value:
return None
if 'untreated' in value:
return 0
if 'exposure' in value:
return 1
return None
def convert_age(value: str) -> Optional[float]:
"""Not used since age data unavailable"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Not used since gender data unavailable"""
return None
# 3. Save metadata about data availability
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical feature extraction and save
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(selected_clinical_df)
print("Preview of extracted clinical features:")
print(preview)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Debug: Print section around matrix begin marker
print("Examining data format:")
with gzip.open(matrix_file, 'rt') as f:
found = False
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
found = True
print("Found marker at line:", i)
print("\nHeader line:")
header = next(f).strip()
print(header)
print("\nFirst few data lines:")
for _ in range(4): # Print 4 data lines
print(next(f).strip())
break
if not found:
print("Matrix begin marker not found")
# Now extract gene expression data with better error handling
def get_gene_data_debug(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame:
skip_rows = 0
with gzip.open(file_path, 'rt') as file:
for i, line in enumerate(file):
if marker in line:
skip_rows = i
break
# Read the data starting right after the marker line
genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows+1,
sep='\t', index_col=0)
return genetic_data
gene_data = get_gene_data_debug(matrix_file)
# Print information about loaded data
print("\nShape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20].tolist())
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene data using library function
gene_data = get_genetic_data(matrix_file)
# Print debug info
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20].tolist())
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Try direct read with error handling and verification
try:
# Use the library function but verify output
gene_data = get_genetic_data(matrix_file)
# Verify we got data
if gene_data.empty:
print("WARNING: No gene expression data loaded!")
else:
print(f"\nSuccessfully loaded gene expression data with shape: {gene_data.shape}")
print("\nFirst 5 rows:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20].tolist())
# Save gene data
gene_data.to_csv(out_gene_data_file)
except Exception as e:
print(f"Error reading gene data: {e}")
print("\nAttempting to examine file content:")
with gzip.open(matrix_file, 'rt') as f:
# Read a bit more after the header
header = False
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
header = True
print("\nFound data start marker")
continue
if header:
print(f"Line after marker {i}: {line[:100]}...")
if i > 85: # Print a few lines after marker
break
# First examine if file contains platform/probe information
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
has_platform = False
gene_annotation_lines = []
for i, line in enumerate(f):
line = line.strip()
if 'platform' in line.lower():
print(f"Platform line: {line}")
has_platform = True
# Collect lines between !platform_table_begin and !platform_table_end
if has_platform and "!platform_table_begin" in line:
next(f) # Skip header line
for data_line in f:
if "!platform_table_end" in data_line:
break
gene_annotation_lines.append(data_line)
break
# Convert collected lines to dataframe if any found
if gene_annotation_lines:
# Join lines and create dataframe
annotation_text = ''.join(gene_annotation_lines)
gene_metadata = pd.read_csv(io.StringIO(annotation_text), delimiter='\t')
print("\nGene annotation dataframe shape:", gene_metadata.shape)
print("\nColumn names:", gene_metadata.columns.tolist())
print("\nFirst few rows:")
print(gene_metadata.head())
else:
print("\nNo gene annotation data found in platform section")
# Create empty dataframe as placeholder
gene_metadata = pd.DataFrame() |