File size: 5,370 Bytes
3ee376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Breast_Cancer"
cohort = "GSE270721"

# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE270721"

# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE270721.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE270721.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE270721.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, HTA 2.0 microarrays were used for transcriptome analysis
is_gene_available = True

# 2.1 Data Availability
# Trait (Breast Cancer): Not directly available in characteristics but can be inferred from series info
# No direct trait row since all samples are breast cancer
trait_row = None

# Age available in row 2  
age_row = 2

# Gender not explicitly available and cannot be reliably inferred
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Not used since trait_row is None
    return None

def convert_age(x):
    # Extract numeric value after colon
    if 'not available' in x.lower():
        return None
    try:
        age = float(x.split(':')[1].strip())
        return age
    except:
        return None

def convert_gender(x):
    # Not used since gender_row is None
    return None

# 3. Save Metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Skip since trait_row is None and clinical data would be uninformative
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Review gene identifiers - these appear to be Affymetrix probesets from transcriptome array
# Format TC#######.hg.1 indicates these need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
    sample_values = gene_metadata[col].dropna().head().tolist()
    print(f"\n{col}:")
    print(sample_values)

# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    header = []
    for i, line in enumerate(f):
        header.append(line.strip())
        if i >= 10:  # Preview first 10 lines
            break
print('\n'.join(header))
# 1. Identify columns for gene mapping
# ID column contains probe identifiers that match gene expression data
# gene_assignment column contains gene symbols

# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# 3. Apply gene mapping to convert probe measurements to gene expression data 
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Preview the mapped data
print("\nShape after mapping to genes:", gene_data.shape)
print("\nFirst few mapped gene expression values:")
print(gene_data.head())
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Since trait data is not available, record this in initial filtering 
# without proceeding to full data validation
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False
)