File size: 4,979 Bytes
13fd1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "COVID-19"
cohort = "GSE185658"

# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE185658"

# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE185658.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE185658.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE185658.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values per row in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this contains microarray gene expression data (mentioned in background)
is_gene_available = True

# 2.1 Data Availability
# Trait (asthma) is available in group field (row 1)
# Using asthma status as relevant trait for COVID-19 research
trait_row = 1
# Age and gender are not available
age_row = None  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert asthma status to binary (0: healthy, 1: asthma)"""
    if not value:
        return None
    # Extract value after colon
    value = value.split(': ')[-1].strip().lower()
    if 'asthma' in value:
        return 1
    elif 'healthy' in value:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to float"""
    return None  # Not used since age data not available

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary (0: female, 1: male)"""
    return None  # Not used since gender data not available

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract Clinical Features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index)[:20])
# The gene identifiers appear to be probe IDs from an array platform (7892XXX format)
# These numeric identifiers are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Preview column names and first few values
print("Gene annotation columns preview:")
print(preview_df(gene_metadata))
# Extract probe IDs and gene assignments from gene annotation data
# The 'ID' column contains probe IDs matching gene expression data
# The 'gene_assignment' column contains gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Save gene data to CSV
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine if features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
note = ""
if os.path.getsize(out_gene_data_file) == 0:
    note = "Gene mapping failed - empty gene expression data"

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,  
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)