File size: 7,610 Bytes
13fd1a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "COVID-19"
cohort = "GSE212865"
# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE212865"
# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE212865.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE212865.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE212865.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # Title mentions "microarrays" and summary discusses gene expression
# 2.1 Data Availability
trait_row = 0 # Disease state indicating COVID vs control
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Data Type Conversion
def convert_trait(value):
"""Convert COVID status to binary (0=Control, 1=COVID/COVID_SDRA)"""
if not isinstance(value, str):
return None
val = value.split(': ')[-1].strip()
if val == 'Control':
return 0
elif val in ['Covid19', 'Covid19_SDRA']:
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait
)
# Preview the results
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])
# These row identifiers appear to be numeric IDs (not gene symbols).
# This kind of identifier pattern suggests probe IDs or similar platform-specific identifiers.
# Based on biomedical knowledge, human gene symbols would be text-based like "GAPDH", "IL6", etc.
# Therefore, these identifiers need to be mapped to standard gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# This is human gene data with proper annotations
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# For each annotation row, extract gene symbols from descriptive text
gene_metadata['Gene_Symbol'] = gene_metadata['SPOT_ID.1'].apply(extract_human_gene_symbols)
# Get mapping data with probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene_Symbol')
# Convert probe-level measurements to gene-level expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save processed gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0).T
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# Add debug prints
print("Clinical features shape:", clinical_features.shape)
print("Normalized gene data shape:", normalized_gene_data.shape)
print("Linked data shape:", linked_data.shape)
print("\nSample IDs in clinical data:", clinical_features.index.tolist()[:5])
print("Sample IDs in gene data:", normalized_gene_data.columns.tolist()[:5])
# Validate linking was successful
if len(linked_data) == 0 or linked_data[trait].isna().all():
print(f"\nData linking failed - no valid samples found")
is_gene_available = False
linked_data = None
else:
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# 1. Normalize gene symbols and save gene data
print("Gene data shape before normalization:", gene_data.shape)
if len(gene_data) == 0:
# Create minimal DataFrame with clinical data for metadata
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False,
is_trait_available=True,
is_biased=True, # Mark as biased since no gene data
df=clinical_features, # Pass clinical features as minimal DataFrame
note="Gene mapping failed - no valid gene symbols found."
)
else:
# Continue with gene normalization and linking if gene data exists
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |