File size: 7,610 Bytes
13fd1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "COVID-19"
cohort = "GSE212865"

# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE212865"

# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE212865.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE212865.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE212865.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # Title mentions "microarrays" and summary discusses gene expression

# 2.1 Data Availability
trait_row = 0  # Disease state indicating COVID vs control
age_row = None  # Age not available
gender_row = None  # Gender not available 

# 2.2 Data Type Conversion
def convert_trait(value):
    """Convert COVID status to binary (0=Control, 1=COVID/COVID_SDRA)"""
    if not isinstance(value, str):
        return None
    val = value.split(': ')[-1].strip()
    if val == 'Control':
        return 0
    elif val in ['Covid19', 'Covid19_SDRA']:
        return 1
    return None
    
# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait
    )
    
    # Preview the results
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(list(genetic_data.index)[:20])
# These row identifiers appear to be numeric IDs (not gene symbols).
# This kind of identifier pattern suggests probe IDs or similar platform-specific identifiers.
# Based on biomedical knowledge, human gene symbols would be text-based like "GAPDH", "IL6", etc.
# Therefore, these identifiers need to be mapped to standard gene symbols.

requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)

# This is human gene data with proper annotations
is_gene_available = True

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
# For each annotation row, extract gene symbols from descriptive text
gene_metadata['Gene_Symbol'] = gene_metadata['SPOT_ID.1'].apply(extract_human_gene_symbols)

# Get mapping data with probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene_Symbol')

# Convert probe-level measurements to gene-level expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Save processed gene data 
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0).T
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# Add debug prints
print("Clinical features shape:", clinical_features.shape)
print("Normalized gene data shape:", normalized_gene_data.shape)
print("Linked data shape:", linked_data.shape)
print("\nSample IDs in clinical data:", clinical_features.index.tolist()[:5])
print("Sample IDs in gene data:", normalized_gene_data.columns.tolist()[:5])

# Validate linking was successful
if len(linked_data) == 0 or linked_data[trait].isna().all():
    print(f"\nData linking failed - no valid samples found")
    is_gene_available = False
    linked_data = None
else:
    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Judge bias in features and remove biased ones
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=is_gene_available,
        is_trait_available=True, 
        is_biased=trait_biased,
        df=linked_data,
        note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls."
    )

    # 6. Save linked data if usable
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)
# 1. Normalize gene symbols and save gene data
print("Gene data shape before normalization:", gene_data.shape)
if len(gene_data) == 0:
    # Create minimal DataFrame with clinical data for metadata
    clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=False,
        is_trait_available=True,
        is_biased=True,  # Mark as biased since no gene data
        df=clinical_features,  # Pass clinical features as minimal DataFrame
        note="Gene mapping failed - no valid gene symbols found."
    )
else:
    # Continue with gene normalization and linking if gene data exists
    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
    normalized_gene_data.to_csv(out_gene_data_file)

    # 2. Link clinical and genetic data  
    clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Judge bias in features and remove biased ones
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls."
    )

    # 6. Save linked data if usable
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)