File size: 5,975 Bytes
13fd1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "COVID-19"
cohort = "GSE212866"

# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE212866"

# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE212866.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE212866.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE212866.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Since this is a microarray study based on peripheral blood samples, it's likely to contain gene expression data
is_gene_available = True 

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 0  # Disease state contains COVID-19 status 
age_row = None  # Age not available
gender_row = None  # Gender not available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert disease state to binary (0 for control, 1 for COVID-19)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'control' in value:
        return 0
    elif 'covid19' in value:  # Both Covid19 and Covid19_SDRA are positive cases
        return 1
    return None

def convert_age(value: str) -> float:
    return None

def convert_gender(value: str) -> int:
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# Based on the row identifiers which appear to be numeric codes (23064070, etc.) instead of standard gene symbols
# we need to map these IDs to human gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)

# This is human gene data with proper annotations
is_gene_available = True

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
# Print more details of gene annotation data to find matching probe IDs
print("\nFirst few rows of gene metadata:")
print(gene_metadata.iloc[:5])

# Use ID column for probe mapping and extract gene symbols from SPOT_ID.1
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'SPOT_ID.1') 

# Convert probe-level measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols using standard names
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data  
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)