File size: 13,252 Bytes
13fd1a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "COVID-19"
cohort = "GSE213313"
# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE213313"
# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE213313.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE213313.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE213313.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is microarray analysis of whole blood RNA samples according to background info
is_gene_available = True
# 2.1 Row Identifiers
trait_row = 2 # severity info in row 2
age_row = None # age not available in characteristics
gender_row = None # gender not available in characteristics
# 2.2 Conversion Functions
def convert_trait(value: str) -> Optional[float]:
if not value or ':' not in value:
return None
severity = value.split(':')[1].strip().lower()
if severity == 'critical':
return 1.0 # More severe
elif severity == 'non-critical':
return 0.0 # Less severe
return None # Healthy controls excluded
def convert_age(value: str) -> Optional[float]:
return None # Not used since age data unavailable
def convert_gender(value: str) -> Optional[float]:
return None # Not used since gender data unavailable
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data, # clinical_data from previous step
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
preview_df(selected_clinical_df)
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Based on the gene identifiers like 'A_19_P00315452', these appear to be Agilent array probes
# rather than standard human gene symbols. They need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# This is human gene data with proper annotations
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Inspect the gene annotation data and identify relevant columns
# 'ID' contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("\nGene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Print diagnostic information
print("\nDiagnostic Information:")
print("Clinical features shape:", clinical_features.shape)
print("Normalized gene data shape:", normalized_gene_data.shape)
print("\nSample of clinical feature IDs:", clinical_features.columns[:5].tolist())
print("Sample of genetic data IDs:", normalized_gene_data.columns[:5].tolist())
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Print linked data info
print("\nLinked data shape before bias check:", linked_data.shape)
print("Columns in linked data:", linked_data.columns[:5].tolist())
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients."
)
# 6. Save linked data if usable
if is_usable:
print("\nSaving linked data with shape:", linked_data.shape)
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
print("Please provide the output from the previous step containing sample characteristics and background information to proceed with data availability assessment and feature extraction.")
raise ValueError("Missing required input from previous step - cannot determine data availability without sample characteristics dictionary")
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# From background info: "microarray analysis of serial whole blood RNA samples"
# This indicates gene expression data is available
is_gene_available = True
# 2.1 Data Availability
# From sample characteristics:
trait_row = 2 # 'severity' indicates COVID-19 severity status
age_row = None # Age data not available
gender_row = None # Gender data not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert severity level to binary (0: Non-critical, 1: Critical)"""
if value is None:
return None
value = value.split(": ")[-1].strip()
if value == "Critical":
return 1
elif value == "Non-critical":
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float - placeholder since age not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary - placeholder since gender not available"""
return None
# 3. Save Metadata
# Trait data is available since trait_row is not None
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview the processed clinical data
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Given that the gene identifiers start with "A_19_P", these are Agilent probe IDs and not standard gene symbols
# They will need to be mapped to official human gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# This is human gene data with proper annotations
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Inspect the gene annotation data and identify relevant columns
# 'ID' contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("\nGene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Load saved clinical features
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients, with gene expression profiles from 19 critical and 15 non-critical patients."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |