File size: 13,252 Bytes
13fd1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "COVID-19"
cohort = "GSE213313"

# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE213313"

# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE213313.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE213313.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE213313.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this is microarray analysis of whole blood RNA samples according to background info
is_gene_available = True

# 2.1 Row Identifiers
trait_row = 2  # severity info in row 2
age_row = None  # age not available in characteristics
gender_row = None  # gender not available in characteristics

# 2.2 Conversion Functions
def convert_trait(value: str) -> Optional[float]:
    if not value or ':' not in value:
        return None
    severity = value.split(':')[1].strip().lower()
    if severity == 'critical':
        return 1.0  # More severe
    elif severity == 'non-critical':
        return 0.0  # Less severe
    return None  # Healthy controls excluded

def convert_age(value: str) -> Optional[float]:
    return None  # Not used since age data unavailable

def convert_gender(value: str) -> Optional[float]:
    return None  # Not used since gender data unavailable

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract Clinical Features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,  # clinical_data from previous step
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed data
    preview_df(selected_clinical_df)
    
    # Save to CSV
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# Based on the gene identifiers like 'A_19_P00315452', these appear to be Agilent array probes
# rather than standard human gene symbols. They need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)

# This is human gene data with proper annotations
is_gene_available = True

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
# Inspect the gene annotation data and identify relevant columns
# 'ID' contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview result
print("\nGene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape)

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# Print diagnostic information
print("\nDiagnostic Information:")
print("Clinical features shape:", clinical_features.shape) 
print("Normalized gene data shape:", normalized_gene_data.shape)
print("\nSample of clinical feature IDs:", clinical_features.columns[:5].tolist())
print("Sample of genetic data IDs:", normalized_gene_data.columns[:5].tolist())

# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Print linked data info
print("\nLinked data shape before bias check:", linked_data.shape)
print("Columns in linked data:", linked_data.columns[:5].tolist())

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients."
)

# 6. Save linked data if usable
if is_usable:
    print("\nSaving linked data with shape:", linked_data.shape)
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
print("Please provide the output from the previous step containing sample characteristics and background information to proceed with data availability assessment and feature extraction.")
raise ValueError("Missing required input from previous step - cannot determine data availability without sample characteristics dictionary")
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# From background info: "microarray analysis of serial whole blood RNA samples"
# This indicates gene expression data is available
is_gene_available = True

# 2.1 Data Availability
# From sample characteristics:
trait_row = 2  # 'severity' indicates COVID-19 severity status
age_row = None # Age data not available
gender_row = None # Gender data not available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert severity level to binary (0: Non-critical, 1: Critical)"""
    if value is None:
        return None
    value = value.split(": ")[-1].strip()
    if value == "Critical":
        return 1
    elif value == "Non-critical":
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to float - placeholder since age not available"""
    return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary - placeholder since gender not available"""
    return None

# 3. Save Metadata
# Trait data is available since trait_row is not None
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction 
# Extract clinical features since trait_row is not None
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait)

# Preview the processed clinical data
print("Preview of clinical features:")
print(preview_df(clinical_features))

# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# Given that the gene identifiers start with "A_19_P", these are Agilent probe IDs and not standard gene symbols
# They will need to be mapped to official human gene symbols for biological interpretation

requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)

# This is human gene data with proper annotations
is_gene_available = True

# Save updated metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)
# Inspect the gene annotation data and identify relevant columns
# 'ID' contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')

# Apply gene mapping to convert probe-level data to gene-level data 
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview result
print("\nGene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape)

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# Load saved clinical features
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients, with gene expression profiles from 19 critical and 15 non-critical patients."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)