File size: 5,048 Bytes
13fd1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "COVID-19"
cohort = "GSE227080"

# Input paths
in_trait_dir = "../DATA/GEO/COVID-19"
in_cohort_dir = "../DATA/GEO/COVID-19/GSE227080"

# Output paths
out_data_file = "./output/preprocess/3/COVID-19/GSE227080.csv"
out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE227080.csv"
out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE227080.csv"
json_path = "./output/preprocess/3/COVID-19/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # Yes, contains immunological gene expression data from NanoString nCounter

# 2.1 Data Availability
trait_row = 2  # Severity information
age_row = 1    # Age information 
gender_row = 0 # Gender information

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert COVID-19 severity to binary: 1 for positive cases (MILD or MOD_SEV), 0 for negative"""
    if not value or ':' not in value:
        return None
    severity = value.split(':')[1].strip().upper()
    if severity == 'NEG':
        return 0
    elif severity in ['MILD', 'MOD_SEV']:
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if not value or ':' not in value:
        return None
    try:
        return float(value.split(':')[1].strip())
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 0 for female, 1 for male"""
    if not value or ':' not in value:
        return None
    gender = value.split(':')[1].strip().upper()
    if gender == 'F':
        return 0
    elif gender == 'M':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
                                         age_row, convert_age,
                                         gender_row, convert_gender)

# Preview the processed clinical data
preview_df(clinical_df)

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# The identifiers in the index appear to be standard human gene symbols (e.g. ABCB1, ABL1, ADA)
# so no mapping is needed
requires_gene_mapping = False
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data.T)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data  
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains immunological gene expression data from 60 COVID-19 positive cases (mild and moderate/severe) and 59 COVID-negative controls."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)