File size: 4,542 Bytes
3ee376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE256539"

# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE256539"

# Output paths
out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE256539.csv"
out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE256539.csv"
out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE256539.csv"
json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is a gene expression dataset using GeoMx Nanostring platform
is_gene_available = True

# 2.1 Data Availability
# Based on background info:
# - Trait (PAH vs Control) can be inferred from sample IDs - all start with either control ('CC') or PAH patterns
trait_row = 0 
# Age and gender are not provided in sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion
def convert_trait(x: str) -> int:
    """Convert sample ID to binary trait (0: Control, 1: PAH)"""
    if not isinstance(x, str):
        return None
    # Extract sample ID after colon and strip whitespace
    sample_id = x.split(':')[-1].strip()
    # CC indicates control samples
    if sample_id.startswith('CC'):
        return 0
    # All other patterns (AH,UA,BA,VA,UC) are PAH samples
    elif any(sample_id.startswith(x) for x in ['AH','UA','BA','VA','UC']):
        return 1
    return None

# Age and gender conversion functions not needed since data unavailable
convert_age = None
convert_gender = None

# 3. Save Initial Metadata
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(clinical_df))
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_df.index)[:20])
# These appear to be standard human gene symbols (HUGO nomenclature)
# For example:
# A2M - Alpha-2-Macroglobulin 
# AAAS - Aladin WD Repeat Nucleoporin
# AACS - Acetoacetyl-CoA Synthetase
# ABCC1 - ATP Binding Cassette Subfamily C Member 1

requires_gene_mapping = False
# 1. Normalize gene symbols
genetic_df = normalize_gene_symbols_in_index(genetic_df)
genetic_df.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_df)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check and handle biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save cohort info
note = "Gene expression data from pulmonary vascular lesions in IPAH patients compared to control pulmonary arteries. Contains trait (PAH vs Control) data but lacks age and gender information."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)