File size: 5,241 Bytes
3ee376c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cardiovascular_Disease"
cohort = "GSE285666"

# Input paths
in_trait_dir = "../DATA/GEO/Cardiovascular_Disease"
in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE285666"

# Output paths
out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE285666.csv"
out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE285666.csv"
out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE285666.csv"
json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from Affymetrix Human Exon arrays
is_gene_available = True

# 2.1 Data Availability
# trait (Williams syndrome) is available in row 0
trait_row = 0
# Age and gender not available in characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    # Extract value after colon
    if ':' in value:
        value = value.split(':')[1].strip()
    # Convert to binary (0=control, 1=disease)
    if 'unaffected' in value.lower() or 'control' in value.lower():
        return 0
    elif 'williams syndrome' in value.lower() or 'ws' in value.lower():
        return 1
    return None

def convert_age(value):
    return None

def convert_gender(value):
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction 
if trait_row is not None:
    clinical_df = geo_select_clinical_features(clinical_data,
                                            trait=trait,
                                            trait_row=trait_row,
                                            convert_trait=convert_trait,
                                            age_row=age_row,
                                            convert_age=convert_age,
                                            gender_row=gender_row, 
                                            convert_gender=convert_gender)
    
    # Preview the data
    preview = preview_df(clinical_df)
    print("Preview of clinical data:")
    print(preview)
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_df.index)[:20])
# These identifiers appear to be numeric probe IDs, not human gene symbols
# Numeric probe IDs typically need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview column names and first few values
print("Column names and preview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify mapping columns:
# ID column contains probe identifiers matching the gene expression data
# gene_assignment contains gene symbols with additional information

# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Preview result 
print("\nFirst 5 genes and their expression values:")
print(preview_df(gene_data, n=5))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check and handle biased features 
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save cohort info
note = "Clinical data structure: binary disease status (Canavan disease) with gender information. Gender distribution is biased with a significant imbalance."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,  
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)