File size: 5,709 Bytes
13fd1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Craniosynostosis"
cohort = "GSE27976"

# Input paths
in_trait_dir = "../DATA/GEO/Craniosynostosis"
in_cohort_dir = "../DATA/GEO/Craniosynostosis/GSE27976"

# Output paths
out_data_file = "./output/preprocess/3/Craniosynostosis/GSE27976.csv"
out_gene_data_file = "./output/preprocess/3/Craniosynostosis/gene_data/GSE27976.csv"
out_clinical_data_file = "./output/preprocess/3/Craniosynostosis/clinical_data/GSE27976.csv"
json_path = "./output/preprocess/3/Craniosynostosis/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability
# Yes - dataset contains gene expression data from osteoblasts
is_gene_available = True

# 2.1. Identify data rows
trait_row = 2  # 'type' field contains case/control status
age_row = 0    # 'age months' field contains age data
gender_row = 1  # 'gender' field contains gender data

# 2.2. Data type conversion functions
def convert_trait(value: str) -> int:
    """Convert trait value to binary (0=control, 1=case)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip()
    if 'Control' in value:
        return 0
    elif 'Synostosis' in value:
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age value to continuous (months)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip()
    try:
        return float(value)
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0=F, 1=M)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip()
    if value == 'F':
        return 0
    elif value == 'M':
        return 1
    return None

# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Extract clinical features
clinical_df = geo_select_clinical_features(clinical_data, 
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait,
                                         age_row=age_row,
                                         convert_age=convert_age,
                                         gender_row=gender_row,
                                         convert_gender=convert_gender)

# Preview results
preview_result = preview_df(clinical_df)
print("Preview of clinical data:")
print(preview_result)

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The gene IDs appear to be Illumina probe IDs (e.g., 7892501) 
# rather than standard human gene symbols. These will need to be mapped.
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns for mapping
# 'ID' in gene annotation matches probe IDs in gene expression data
# 'gene_assignment' contains gene symbols in a complex format

# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')

# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Print shape of the gene expression data
print("Gene expression data shape:", gene_data.shape)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data) 
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains gene expression from cardiogenic shock patients under ECMO, tracking outcome (Success vs Failure)"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)