File size: 5,709 Bytes
13fd1a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Craniosynostosis"
cohort = "GSE27976"
# Input paths
in_trait_dir = "../DATA/GEO/Craniosynostosis"
in_cohort_dir = "../DATA/GEO/Craniosynostosis/GSE27976"
# Output paths
out_data_file = "./output/preprocess/3/Craniosynostosis/GSE27976.csv"
out_gene_data_file = "./output/preprocess/3/Craniosynostosis/gene_data/GSE27976.csv"
out_clinical_data_file = "./output/preprocess/3/Craniosynostosis/clinical_data/GSE27976.csv"
json_path = "./output/preprocess/3/Craniosynostosis/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability
# Yes - dataset contains gene expression data from osteoblasts
is_gene_available = True
# 2.1. Identify data rows
trait_row = 2 # 'type' field contains case/control status
age_row = 0 # 'age months' field contains age data
gender_row = 1 # 'gender' field contains gender data
# 2.2. Data type conversion functions
def convert_trait(value: str) -> int:
"""Convert trait value to binary (0=control, 1=case)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip()
if 'Control' in value:
return 0
elif 'Synostosis' in value:
return 1
return None
def convert_age(value: str) -> float:
"""Convert age value to continuous (months)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip()
try:
return float(value)
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0=F, 1=M)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip()
if value == 'F':
return 0
elif value == 'M':
return 1
return None
# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview results
preview_result = preview_df(clinical_df)
print("Preview of clinical data:")
print(preview_result)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The gene IDs appear to be Illumina probe IDs (e.g., 7892501)
# rather than standard human gene symbols. These will need to be mapped.
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns for mapping
# 'ID' in gene annotation matches probe IDs in gene expression data
# 'gene_assignment' contains gene symbols in a complex format
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print shape of the gene expression data
print("Gene expression data shape:", gene_data.shape)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Dataset contains gene expression from cardiogenic shock patients under ECMO, tracking outcome (Success vs Failure)"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |