File size: 5,175 Bytes
5716e25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cystic_Fibrosis"
cohort = "GSE129168"

# Input paths
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE129168"

# Output paths
out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE129168.csv"
out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE129168.csv"
out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE129168.csv"
json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on series summary mentioning RNA from adult intestine and gene expression analysis

# 2.1 Identify row numbers for clinical features
trait_row = 2  # Genotype information contains CF status
age_row = None  # Age not available
gender_row = None  # Gender not available

# 2.2 Define conversion functions
def convert_trait(value: str) -> int:
    """Convert CF status to binary: 1 for CF (p.Phe508del), 0 for WT"""
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].strip()
    if 'p.Phe508del' in value and 'gene corrected' not in value:
        return 1
    elif 'WT' in value or 'gene corrected' in value:
        return 0
    return None

def convert_age(value: str) -> float:
    return None

def convert_gender(value: str) -> int:
    return None

# 3. Save initial metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features if available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(selected_clinical_df))
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# ID format starting with "A_23_P" indicates Agilent array probe IDs
# These are not standard human gene symbols and need to be mapped
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify relevant columns: 'ID' contains probe IDs matching gene expression data, 
# 'GENE_SYMBOL' contains gene symbols
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'

# 2. Get gene mapping dataframe with probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data) 
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)