File size: 5,175 Bytes
5716e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cystic_Fibrosis"
cohort = "GSE129168"
# Input paths
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE129168"
# Output paths
out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE129168.csv"
out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE129168.csv"
out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE129168.csv"
json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Based on series summary mentioning RNA from adult intestine and gene expression analysis
# 2.1 Identify row numbers for clinical features
trait_row = 2 # Genotype information contains CF status
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Define conversion functions
def convert_trait(value: str) -> int:
"""Convert CF status to binary: 1 for CF (p.Phe508del), 0 for WT"""
if pd.isna(value):
return None
value = value.split(': ')[-1].strip()
if 'p.Phe508del' in value and 'gene corrected' not in value:
return 1
elif 'WT' in value or 'gene corrected' in value:
return 0
return None
def convert_age(value: str) -> float:
return None
def convert_gender(value: str) -> int:
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features if available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical_df))
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# ID format starting with "A_23_P" indicates Agilent array probe IDs
# These are not standard human gene symbols and need to be mapped
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify relevant columns: 'ID' contains probe IDs matching gene expression data,
# 'GENE_SYMBOL' contains gene symbols
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'
# 2. Get gene mapping dataframe with probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |