File size: 6,156 Bytes
06befd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Fibromyalgia"
cohort = "GSE67311"

# Input paths
in_trait_dir = "../DATA/GEO/Fibromyalgia"
in_cohort_dir = "../DATA/GEO/Fibromyalgia/GSE67311"

# Output paths
out_data_file = "./output/preprocess/3/Fibromyalgia/GSE67311.csv"
out_gene_data_file = "./output/preprocess/3/Fibromyalgia/gene_data/GSE67311.csv"
out_clinical_data_file = "./output/preprocess/3/Fibromyalgia/clinical_data/GSE67311.csv"
json_path = "./output/preprocess/3/Fibromyalgia/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from Affymetrix Human Gene arrays
is_gene_available = True

# 2.1 Data Availability

# trait_row = 0 - diagnosis information is in row 0
trait_row = 0

# Age information is not available in the sample characteristics
age_row = None

# Gender information is not available in the sample characteristics
gender_row = None

# 2.2 Data Type Conversion Functions

def convert_trait(x):
    if pd.isna(x):
        return None
    # Extract value after colon and strip whitespace
    value = x.split(':')[1].strip().lower()
    # Convert to binary: fibromyalgia = 1, healthy control = 0
    if 'fibromyalgia' in value:
        return 1
    elif 'healthy control' in value:
        return 0
    return None

# Age conversion function not needed since data not available
convert_age = None

# Gender conversion function not needed since data not available
convert_gender = None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract clinical features
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age,
                                               gender_row=gender_row, 
                                               convert_gender=convert_gender)

# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))

# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# Looking at the probe IDs (e.g. '7892501'), these are Illumina probe IDs, not human gene symbols.
# They need to be mapped to HGNC gene symbols for consistent analysis.

requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# Identify columns for mapping: ID for probes and gene_assignment for gene symbols
prob_col = 'ID'
gene_col = 'gene_assignment'

# Filter out rows where gene_assignment is '---' as they won't map to genes
filtered_annotation = gene_annotation[gene_annotation['gene_assignment'] != '---']

# Get the mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(filtered_annotation, prob_col, gene_col)

# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols using the NCBI Gene database
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview results
print("\nFirst 5 rows of the gene mapping:")
print(mapping_data.head())

print("\nFirst 5 rows of the gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) 
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# Handle missing values systematically 
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")