File size: 5,404 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE12385"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE12385"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE12385.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE12385.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE12385.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability - Yes, this is whole genome microarray data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Heart rate data is not available in this dataset
trait_row = None
# Age data is available in row 1
age_row = 1
# Gender is available in row 0
gender_row = 0
# Conversion functions
def convert_trait(x):
# Not used since trait data is not available
return None
def convert_age(x):
try:
# Extract number after colon and convert to float
age = float(x.split(": ")[1])
return age
except:
return None
def convert_gender(x):
# All samples are male so return 1
return 1
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Skip this step since trait data is not available (trait_row is None)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# In this dataset, the identifiers appear to be numeric values (e.g. 1, 2, 3)
# These are probe IDs from a microarray platform which need to be mapped
# to human gene symbols for proper analysis.
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# In gene expression data, IDs are stored in the index
# In gene annotation data, looking at the columns, 'ID' matches these identifiers
# 'GENE_SYMBOL' contains the gene symbols we want to map to
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply the gene mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data to file
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Print information about the mapping results
print("Original probe data shape:", genetic_data.shape)
print("Mapped gene data shape:", gene_data.shape)
print("\nFirst few gene symbols and their expression values:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data together
# Since trait data is not available, we have no clinical data to link with
clinical_data = pd.DataFrame()
if not clinical_data.empty:
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
else:
linked_data = pd.DataFrame()
# 3. Handle missing values if we have linked data
if not linked_data.empty and trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased = True # No trait data means it's biased by default
if not linked_data.empty and trait in linked_data.columns:
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "This dataset lacks heart rate measurements. The study focused on gene expression changes in PBMCs before and after physical activity, but did not include heart rate as a measured variable."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |