File size: 8,127 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Heart_rate"
cohort = "GSE236927"

# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE236927"

# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE236927.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE236927.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE236927.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"

# Previous code
clinical_data = pd.DataFrame({0: ["Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
              "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
              "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
              "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
              "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development"],
              1: ["Organism: Homo sapiens",
                  "Organism: Homo sapiens", 
                  "Organism: Homo sapiens",
                  "Organism: Homo sapiens",
                  "Organism: Homo sapiens"],
              2: ["characteristic: tissue: Right ventricle",
                  "characteristic: tissue: Right ventricle",
                  "characteristic: tissue: Right ventricle",
                  "characteristic: tissue: Right ventricle", 
                  "characteristic: tissue: Right ventricle"],
              3: ["characteristic: disease state: tetralogy of fallot",
                  "characteristic: disease state: normal",
                  "characteristic: disease state: tetralogy of fallot",
                  "characteristic: disease state: normal",
                  "characteristic: disease state: tetralogy of fallot"],
              4: ["characteristic: gestational age: 13-17 weeks",
                  "characteristic: gestational age: 13-17 weeks",
                  "characteristic: gestational age: 13-17 weeks",
                  "characteristic: gestational age: 13-17 weeks",
                  "characteristic: gestational age: 13-17 weeks"],
              5: ["characteristic: heart rate: 155",
                  "characteristic: heart rate: 123", 
                  "characteristic: heart rate: 135",
                  "characteristic: heart rate: 145",
                  "characteristic: heart rate: 157"]})

# Transpose clinical data for proper processing
clinical_data = clinical_data.T

# 1. Gene Expression Data Availability 
is_gene_available = True  # RNA transcriptome data

# 2.1 Data Availability 
trait_row = 5  # heart rate data in row 5
age_row = 4    # gestational age in row 4  
gender_row = None  # gender not available

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x): return None
    try:
        # Extract numeric value after colon
        val = float(x.split(': ')[-1])
        return val
    except:
        return None
        
def convert_age(x):
    if pd.isna(x): return None
    try:
        # Extract weeks range and take average
        weeks = x.split(': ')[-1].replace('weeks','').strip()
        if '-' in weeks:
            low, high = map(float, weeks.split('-'))
            return (low + high)/2
        return float(weeks)
    except:
        return None

def convert_gender(x):
    # Not used since gender data unavailable
    return None

# 3. Save Initial Filtering Results
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path, 
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_df = geo_select_clinical_features(clinical_data, 
                                             trait=trait,
                                             trait_row=trait_row,
                                             convert_trait=convert_trait,
                                             age_row=age_row,
                                             convert_age=convert_age,
                                             gender_row=gender_row,
                                             convert_gender=convert_gender)
    
    print("Preview of processed clinical data:")
    print(preview_df(clinical_df))
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data 
gene_data = get_genetic_data(matrix_path)

# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
# Review the gene IDs - these are Illumina probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)

# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# Extract mapping data between probe IDs and gene symbols
# The ID column contains probe IDs matching those in gene expression data
# The Symbol column contains gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to convert probe-level data to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Print preview of mapped gene expression data
print("\nPreview of gene expression data after mapping to gene symbols:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Load saved clinical data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)

# Ensure clinical features are in correct format (features × samples)
if len(clinical_features.columns) > len(clinical_features.index):
    clinical_features = clinical_features.T

# 2. Link clinical and genetic data  
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biases and remove biased demographic features
print("\nChecking feature distributions:")
trait_type = 'continuous'  # Heart rate is a continuous variable
is_biased = judge_continuous_variable_biased(linked_data, trait)

# Remove biased demographic features
if "Age" in linked_data.columns:
    if judge_continuous_variable_biased(linked_data, "Age"):
        linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
    if judge_binary_variable_biased(linked_data, "Gender"):
        linked_data = linked_data.drop(columns="Gender")

# 5. Validate and save cohort info
note = "Heart rate values measured in normal fetal heart tissue and tissue from tetralogy of fallot cases."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)