File size: 8,127 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE236927"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE236927"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE236927.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE236927.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE236927.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Previous code
clinical_data = pd.DataFrame({0: ["Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development",
"Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development"],
1: ["Organism: Homo sapiens",
"Organism: Homo sapiens",
"Organism: Homo sapiens",
"Organism: Homo sapiens",
"Organism: Homo sapiens"],
2: ["characteristic: tissue: Right ventricle",
"characteristic: tissue: Right ventricle",
"characteristic: tissue: Right ventricle",
"characteristic: tissue: Right ventricle",
"characteristic: tissue: Right ventricle"],
3: ["characteristic: disease state: tetralogy of fallot",
"characteristic: disease state: normal",
"characteristic: disease state: tetralogy of fallot",
"characteristic: disease state: normal",
"characteristic: disease state: tetralogy of fallot"],
4: ["characteristic: gestational age: 13-17 weeks",
"characteristic: gestational age: 13-17 weeks",
"characteristic: gestational age: 13-17 weeks",
"characteristic: gestational age: 13-17 weeks",
"characteristic: gestational age: 13-17 weeks"],
5: ["characteristic: heart rate: 155",
"characteristic: heart rate: 123",
"characteristic: heart rate: 135",
"characteristic: heart rate: 145",
"characteristic: heart rate: 157"]})
# Transpose clinical data for proper processing
clinical_data = clinical_data.T
# 1. Gene Expression Data Availability
is_gene_available = True # RNA transcriptome data
# 2.1 Data Availability
trait_row = 5 # heart rate data in row 5
age_row = 4 # gestational age in row 4
gender_row = None # gender not available
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x): return None
try:
# Extract numeric value after colon
val = float(x.split(': ')[-1])
return val
except:
return None
def convert_age(x):
if pd.isna(x): return None
try:
# Extract weeks range and take average
weeks = x.split(': ')[-1].replace('weeks','').strip()
if '-' in weeks:
low, high = map(float, weeks.split('-'))
return (low + high)/2
return float(weeks)
except:
return None
def convert_gender(x):
# Not used since gender data unavailable
return None
# 3. Save Initial Filtering Results
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
print("Preview of processed clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data
gene_data = get_genetic_data(matrix_path)
# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
# Review the gene IDs - these are Illumina probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)
# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# Extract mapping data between probe IDs and gene symbols
# The ID column contains probe IDs matching those in gene expression data
# The Symbol column contains gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply gene mapping to convert probe-level data to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Print preview of mapped gene expression data
print("\nPreview of gene expression data after mapping to gene symbols:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Load saved clinical data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
# Ensure clinical features are in correct format (features × samples)
if len(clinical_features.columns) > len(clinical_features.index):
clinical_features = clinical_features.T
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biases and remove biased demographic features
print("\nChecking feature distributions:")
trait_type = 'continuous' # Heart rate is a continuous variable
is_biased = judge_continuous_variable_biased(linked_data, trait)
# Remove biased demographic features
if "Age" in linked_data.columns:
if judge_continuous_variable_biased(linked_data, "Age"):
linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
if judge_binary_variable_biased(linked_data, "Gender"):
linked_data = linked_data.drop(columns="Gender")
# 5. Validate and save cohort info
note = "Heart rate values measured in normal fetal heart tissue and tissue from tetralogy of fallot cases."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |