File size: 6,164 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Heart_rate"
cohort = "GSE34788"

# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE34788"

# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE34788.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE34788.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE34788.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"

# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)

# Get unique values by row in clinical data and limit the number shown
sample_chars = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in sample_chars.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on the summary mentioning "microarray analyses on mRNA", this dataset contains gene expression data
is_gene_available = True

# 2.1 Data Availability
trait_row = 6  # Heart rate data available in row 6
gender_row = 1  # Gender data available in row 1
age_row = None  # Age data not available in sample characteristics

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert heart rate response to binary: 0 for low responders, 1 for high responders"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'low' in value:
        return 0
    elif 'high' in value:
        return 1
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 0 for female, 1 for male"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

convert_age = None  # Not needed since age data is not available

# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False, 
                                 cohort=cohort,
                                 info_path=json_path,
                                 is_gene_available=is_gene_available,
                                 is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age,
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
gene_data = get_genetic_data(matrix_path)

# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
# These identifiers appear to be numerical probe IDs, not human gene symbols
# They look like Illumina BeadArray probe IDs which will need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)

# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# Get gene mapping between gene names and probes
# 'ID' in gene annotation matches probe IDs in gene expression data
# 'gene_assignment' contains information about gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply gene mapping to convert probe level data to gene level data 
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)

# Normalize gene symbols to standard format and aggregate duplicate genes
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview updated gene data
print("\nFirst 20 gene symbols after mapping:")
print(gene_data.index[:20].tolist())
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biases and remove biased demographic features
trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'
if trait_type == "binary":
    is_biased = judge_binary_variable_biased(linked_data, trait)
else:
    is_biased = judge_continuous_variable_biased(linked_data, trait)

# Remove biased demographic features
if "Age" in linked_data.columns:
    if judge_continuous_variable_biased(linked_data, "Age"):
        linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
    if judge_binary_variable_biased(linked_data, "Gender"):
        linked_data = linked_data.drop(columns="Gender")

# 5. Validate and save cohort info
note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)