File size: 6,164 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE34788"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE34788"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE34788.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE34788.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE34788.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
# Get unique values by row in clinical data and limit the number shown
sample_chars = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in sample_chars.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the summary mentioning "microarray analyses on mRNA", this dataset contains gene expression data
is_gene_available = True
# 2.1 Data Availability
trait_row = 6 # Heart rate data available in row 6
gender_row = 1 # Gender data available in row 1
age_row = None # Age data not available in sample characteristics
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert heart rate response to binary: 0 for low responders, 1 for high responders"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'low' in value:
return 0
elif 'high' in value:
return 1
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary: 0 for female, 1 for male"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
convert_age = None # Not needed since age data is not available
# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
gene_data = get_genetic_data(matrix_path)
# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
# These identifiers appear to be numerical probe IDs, not human gene symbols
# They look like Illumina BeadArray probe IDs which will need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)
# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# Get gene mapping between gene names and probes
# 'ID' in gene annotation matches probe IDs in gene expression data
# 'gene_assignment' contains information about gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to convert probe level data to gene level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# Normalize gene symbols to standard format and aggregate duplicate genes
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview updated gene data
print("\nFirst 20 gene symbols after mapping:")
print(gene_data.index[:20].tolist())
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biases and remove biased demographic features
trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'
if trait_type == "binary":
is_biased = judge_binary_variable_biased(linked_data, trait)
else:
is_biased = judge_continuous_variable_biased(linked_data, trait)
# Remove biased demographic features
if "Age" in linked_data.columns:
if judge_continuous_variable_biased(linked_data, "Age"):
linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
if judge_binary_variable_biased(linked_data, "Gender"):
linked_data = linked_data.drop(columns="Gender")
# 5. Validate and save cohort info
note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |