File size: 5,805 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Heart_rate"
cohort = "GSE35661"

# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE35661"

# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE35661.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE35661.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE35661.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"

# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)

# Get unique values by row in clinical data and limit the number shown
sample_chars = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in sample_chars.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Series title suggests transcriptional data and U133+2 arrays, so it's likely gene expression data
is_gene_available = True

# 2. Variable Availability and Type Conversion
# Heart rate data is available in row 2
trait_row = 2

# Age data not available
age_row = None 

# Gender data available in row 0
gender_row = 0

def convert_trait(val):
    if pd.isna(val):
        return None
    try:
        # Extract numeric value after "heart rate (bpm):"
        val = val.split(":")[-1].strip()
        return float(val)
    except:
        return None

def convert_age(val):
    # Age not available
    return None

def convert_gender(val):
    if pd.isna(val):
        return None
    try:
        # Extract value after colon
        val = val.split(":")[-1].strip().lower()
        if val == "male":
            return 1
        elif val == "female":
            return 0
        return None
    except:
        return None

# 3. Save Metadata 
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    
    # Save clinical features
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
gene_data = get_genetic_data(matrix_path)

# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)

# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# Since we have Ensembl transcript IDs (ENST), we should use direct gene symbol
# normalization rather than probe-to-gene mapping
# First normalize the transcript IDs by removing '_at' suffix
gene_data.index = gene_data.index.str.replace('_at$', '', regex=True)

# Normalize gene symbols using NCBI gene synonym dictionary
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview result
print("\nFirst 20 normalized gene symbols:")
print(gene_data.index[:20].tolist())
# Get mapping from annotation data
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy()
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'})
# Remove trailing '_at' from IDs to match gene_data
mapping_df['ID'] = mapping_df['ID'].str.replace('_at$', '', regex=True)

# Convert probe measurements to gene expression values 
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Check for biases and remove biased demographic features
trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'
if trait_type == "binary":
    is_biased = judge_binary_variable_biased(linked_data, trait)
else:
    is_biased = judge_continuous_variable_biased(linked_data, trait)

# Remove biased demographic features
if "Age" in linked_data.columns:
    if judge_continuous_variable_biased(linked_data, "Age"):
        linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
    if judge_binary_variable_biased(linked_data, "Gender"):
        linked_data = linked_data.drop(columns="Gender")

# Validate and save cohort info
note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)