File size: 5,805 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE35661"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE35661"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE35661.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE35661.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE35661.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Get file paths
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
# Get unique values by row in clinical data and limit the number shown
sample_chars = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in sample_chars.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Series title suggests transcriptional data and U133+2 arrays, so it's likely gene expression data
is_gene_available = True
# 2. Variable Availability and Type Conversion
# Heart rate data is available in row 2
trait_row = 2
# Age data not available
age_row = None
# Gender data available in row 0
gender_row = 0
def convert_trait(val):
if pd.isna(val):
return None
try:
# Extract numeric value after "heart rate (bpm):"
val = val.split(":")[-1].strip()
return float(val)
except:
return None
def convert_age(val):
# Age not available
return None
def convert_gender(val):
if pd.isna(val):
return None
try:
# Extract value after colon
val = val.split(":")[-1].strip().lower()
if val == "male":
return 1
elif val == "female":
return 0
return None
except:
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save clinical features
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
gene_data = get_genetic_data(matrix_path)
# Print first 20 probe/gene IDs
print("First 20 probe/gene IDs:")
print(gene_data.index[:20].tolist())
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_path)
# Preview column names and first few values
column_preview = preview_df(gene_annotation)
print("\nGene annotation columns and sample values:")
print(column_preview)
# Since we have Ensembl transcript IDs (ENST), we should use direct gene symbol
# normalization rather than probe-to-gene mapping
# First normalize the transcript IDs by removing '_at' suffix
gene_data.index = gene_data.index.str.replace('_at$', '', regex=True)
# Normalize gene symbols using NCBI gene synonym dictionary
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview result
print("\nFirst 20 normalized gene symbols:")
print(gene_data.index[:20].tolist())
# Get mapping from annotation data
mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy()
mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'})
# Remove trailing '_at' from IDs to match gene_data
mapping_df['ID'] = mapping_df['ID'].str.replace('_at$', '', regex=True)
# Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Check for biases and remove biased demographic features
trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'
if trait_type == "binary":
is_biased = judge_binary_variable_biased(linked_data, trait)
else:
is_biased = judge_continuous_variable_biased(linked_data, trait)
# Remove biased demographic features
if "Age" in linked_data.columns:
if judge_continuous_variable_biased(linked_data, "Age"):
linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
if judge_binary_variable_biased(linked_data, "Gender"):
linked_data = linked_data.drop(columns="Gender")
# Validate and save cohort info
note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |