File size: 2,773 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Height"
cohort = "GSE102130"
# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE102130"
# Output paths
out_data_file = "./output/preprocess/3/Height/GSE102130.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE102130.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE102130.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Contains scRNA-seq data according to series title and summary
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Keys
# None of Height, age or gender information is available in the sample characteristics
trait_row = None
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if ':' in str(x):
val = str(x).split(':')[1].strip()
try:
return float(val)
except:
return None
return None
def convert_age(x):
if ':' in str(x):
val = str(x).split(':')[1].strip()
try:
return float(val)
except:
return None
return None
def convert_gender(x):
if ':' in str(x):
val = str(x).split(':')[1].strip().lower()
if 'female' in val or 'f' in val:
return 0
elif 'male' in val or 'm' in val:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction is skipped since trait_row is None
# Extract gene expression data from the matrix file
try:
# First check if we can read the file and print contents
print("First few lines of the matrix file:")
with gzip.open(matrix_file_path, 'rt', encoding='latin-1') as file:
for i, line in enumerate(file):
if i < 10:
print(line.strip())
if i > 10:
break
except Exception as e:
print(f"Error reading matrix file: {e}") |