File size: 5,671 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Height"
cohort = "GSE106800"

# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE106800"

# Output paths
out_data_file = "./output/preprocess/3/Height/GSE106800.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE106800.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE106800.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From background info: "Microarray analysis was performed on skeletal muscle biopsies"
# This indicates gene expression data is available
is_gene_available = True

# 2. Variable Availability and Data Type Conversion 
# Height data is available in row 3
trait_row = 3

def convert_trait(x):
    try:
        # Extract numeric value after colon and space
        return float(x.split(': ')[1])
    except:
        return None

# Age data is available in row 2
age_row = 2

def convert_age(x):
    try:
        return float(x.split(': ')[1])
    except:
        return None

# Gender data is available in row 0 but only one value (male)
gender_row = None  # Constant features are not useful

def convert_gender(x):
    try:
        val = x.split(': ')[1].lower()
        if val == 'male':
            return 1
        elif val == 'female':
            return 0
        return None
    except:
        return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=(trait_row is not None))

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age,
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# Review the gene identifiers
# The identifiers are numeric codes like '16650001', '16650003' etc.
# These are not standard gene symbols (like BRCA1, TNF etc.)
# They appear to be probe IDs that need to be mapped to gene symbols

requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get gene mapping dataframe from gene annotation
# 'ID' column in gene_metadata contains probe IDs that match gene expression data
# 'gene_assignment' contains gene symbols in a messy format
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from skeletal muscle biopsies and height measurements from subjects"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)