File size: 6,321 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Height"
cohort = "GSE117525"

# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE117525"

# Output paths
out_data_file = "./output/preprocess/3/Height/GSE117525.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE117525.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE117525.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info mentioning "skeletal muscle transcriptome" and "gene expression profiling"
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers
trait_row = 4  # Height data in row 4
age_row = 3    # Age data in row 3  
gender_row = 1 # Gender data in row 1

# 2.2 Conversion functions
def convert_trait(x):
    if pd.isna(x):
        return None
    try:
        # Extract height value after colon and convert to float
        height = float(x.split(': ')[1])
        return height
    except:
        return None

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        # Extract age value and convert to float
        age = float(x.split(': ')[1])
        return age
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    try:
        # Extract gender value after colon
        gender = x.split(': ')[1].strip().upper()
        if gender == 'F':
            return 0
        elif gender == 'M':
            return 1
        return None
    except:
        return None

# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract clinical features 
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
with gzip.open(matrix_file_path, 'rt') as file:
    for i, line in enumerate(file):
        if "!series_matrix_table_begin" in line:
            skip_rows = i + 1
            break

genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1, 
                          sep='\t', comment='!', header=0, index_col=0)

# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Looking at the identifiers like "100009676_at", "10000_at", "10001_at", etc.
# These appear to be probe IDs from a microarray platform rather than standard human gene symbols
# The "_at" suffix is characteristic of Affymetrix arrays
# These identifiers will need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Parse the Description column to extract gene symbols
mapping_data = pd.DataFrame({
    'ID': gene_metadata['ID'],
    'Gene': gene_metadata['Description'].apply(lambda x: x.split(',')[0].strip() if pd.notna(x) else None)
})

print("Preview of gene mapping data:")
print(json.dumps(preview_df(mapping_data), indent=2))
# Get gene mapping dataframe from gene annotation data
# ID column matches the probe IDs in gene expression data (e.g. "100009676_at")
# Description column contains gene names that we need to map to
mapping_df = pd.DataFrame({
    'ID': gene_metadata['ID'],
    'Gene': gene_metadata['Description'].apply(lambda x: extract_human_gene_symbols(x)[0] if pd.notna(x) and extract_human_gene_symbols(x) else None)
})

# Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the mapped gene data
print("\nPreview of gene expression data after mapping:")
print(gene_data.head())
print("\nShape of gene expression data:", gene_data.shape)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Clean height measurements - filter out weight values that were incorrectly recorded as height
linked_data = linked_data[linked_data[trait] < 3.0]  # Keep only plausible height values in meters

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Final validation and save metadata
note = "Dataset contains gene expression data from muscle tissue. Original height measurements had inconsistent units - filtered to keep only plausible meter values."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 7. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)