File size: 10,636 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Height"
cohort = "GSE152073"
# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE152073"
# Output paths
out_data_file = "./output/preprocess/3/Height/GSE152073.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE152073.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE152073.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background info, this is Affymetrix microarray data from blood samples
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait (Height) is in row 2
trait_row = 2
def convert_trait(x):
if pd.isna(x):
return None
try:
# Extract value after colon and convert to float
return float(x.split(': ')[1])
except:
return None
# Age data is in row 1
age_row = 1
def convert_age(x):
if pd.isna(x):
return None
try:
# Extract value after colon and convert to float
return float(x.split(': ')[1])
except:
return None
# Gender data is in row 0, but only contains 'female'
# Since all subjects are female, gender is not a useful variable
gender_row = None
def convert_gender(x):
if pd.isna(x):
return None
val = x.split(': ')[1].lower()
if val == 'female':
return 0
elif val == 'male':
return 1
return None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features
if trait_row is not None:
# Extract and process clinical features
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical)
print("Preview of selected clinical features:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows,
sep='\t', comment='!', header=0, index_col=0)
# Print information about the data structure
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Extract gene expression data from the matrix file
with gzip.open(matrix_file_path, 'rt') as file:
for i, line in enumerate(file):
if "!series_matrix_table_begin" in line:
skip_rows = i + 1
break
# Read the genetic data while preserving correct sample IDs
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1,
sep='\t', comment='!', header=0, index_col=0)
# Print information about the data structure
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
print("\nShape of genetic data:", genetic_data.shape)
print("\nFirst few rows with sample IDs:")
print(genetic_data.head())
# These identifiers appear to be from a microarray platform (likely HG-U133_Plus_2.0)
# and need to be mapped to standard gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Get mapping between IDs in gene expression data and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape info
print("Shape of gene data before mapping:", genetic_data.shape)
print("Shape of gene data after mapping:", gene_data.shape)
# Display a preview
print("\nFirst few rows after mapping:")
print(gene_data.head())
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene expression data from the matrix file
with gzip.open(matrix_file_path, 'rt') as file:
for i, line in enumerate(file):
if "!series_matrix_table_begin" in line:
skip_rows = i + 1
break
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1,
sep='\t', comment='!', header=0, index_col=0)
# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Based on the preview, 'ID' column has the same identifiers as gene expression data
# 'gene_assignment' contains gene symbols in a structured format
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape info
print("Shape of gene data before mapping:", genetic_data.shape)
print("Shape of gene data after mapping:", gene_data.shape)
# Display a preview
print("\nFirst few rows after mapping:")
print(gene_data.head())
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation and expression data
gene_metadata = get_gene_annotation(soft_file_path)
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Get gene expression data
with gzip.open(matrix_file_path, 'rt') as file:
for i, line in enumerate(file):
if "!series_matrix_table_begin" in line:
skip_rows = i + 1
break
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1,
sep='\t', comment='!', header=0, index_col=0)
# Map probes to genes
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from PBMCs and height measurements from 40 subjects"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from microarray (Affymetrix)
is_gene_available = True
# 2.1 Data Availability
trait_row = 2 # height data in row 2
age_row = 1 # age data in row 1
gender_row = None # All females, so not useful for association study
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
try:
# Extract numeric value after colon and convert to float
return float(x.split(': ')[1])
except:
return None
def convert_age(x):
if pd.isna(x):
return None
try:
# Extract numeric value after colon and convert to float
return float(x.split(': ')[1])
except:
return None
def convert_gender(x):
# Not needed since gender is constant
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=None,
convert_gender=None
)
# Preview the extracted features
preview = preview_df(selected_clinical)
print("Preview of selected clinical features:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file) |