File size: 10,636 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Height"
cohort = "GSE152073"

# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE152073"

# Output paths
out_data_file = "./output/preprocess/3/Height/GSE152073.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE152073.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE152073.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background info, this is Affymetrix microarray data from blood samples
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# Trait (Height) is in row 2
trait_row = 2

def convert_trait(x):
    if pd.isna(x):
        return None
    try:
        # Extract value after colon and convert to float
        return float(x.split(': ')[1])
    except:
        return None

# Age data is in row 1
age_row = 1 

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        # Extract value after colon and convert to float
        return float(x.split(': ')[1])
    except:
        return None

# Gender data is in row 0, but only contains 'female'
# Since all subjects are female, gender is not a useful variable
gender_row = None

def convert_gender(x):
    if pd.isna(x):
        return None
    val = x.split(': ')[1].lower()
    if val == 'female':
        return 0
    elif val == 'male': 
        return 1
    return None

# 3. Save metadata 
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features
if trait_row is not None:
    # Extract and process clinical features
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical)
    print("Preview of selected clinical features:")
    print(preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows, 
                          sep='\t', comment='!', header=0, index_col=0)

# Print information about the data structure
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Extract gene expression data from the matrix file
with gzip.open(matrix_file_path, 'rt') as file:
    for i, line in enumerate(file):
        if "!series_matrix_table_begin" in line:
            skip_rows = i + 1
            break

# Read the genetic data while preserving correct sample IDs
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1, 
                          sep='\t', comment='!', header=0, index_col=0)

# Print information about the data structure 
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
print("\nShape of genetic data:", genetic_data.shape)
print("\nFirst few rows with sample IDs:")
print(genetic_data.head())
# These identifiers appear to be from a microarray platform (likely HG-U133_Plus_2.0) 
# and need to be mapped to standard gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Get mapping between IDs in gene expression data and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print shape info
print("Shape of gene data before mapping:", genetic_data.shape)
print("Shape of gene data after mapping:", gene_data.shape)

# Display a preview
print("\nFirst few rows after mapping:")
print(gene_data.head())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene expression data from the matrix file
with gzip.open(matrix_file_path, 'rt') as file:
    for i, line in enumerate(file):
        if "!series_matrix_table_begin" in line:
            skip_rows = i + 1
            break

genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1, 
                          sep='\t', comment='!', header=0, index_col=0)

# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)

# Based on the preview, 'ID' column has the same identifiers as gene expression data
# 'gene_assignment' contains gene symbols in a structured format 
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print shape info
print("Shape of gene data before mapping:", genetic_data.shape)
print("Shape of gene data after mapping:", gene_data.shape)

# Display a preview
print("\nFirst few rows after mapping:")
print(gene_data.head())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation and expression data
gene_metadata = get_gene_annotation(soft_file_path)
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Get gene expression data 
with gzip.open(matrix_file_path, 'rt') as file:
    for i, line in enumerate(file):
        if "!series_matrix_table_begin" in line:
            skip_rows = i + 1
            break
genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1, 
                          sep='\t', comment='!', header=0, index_col=0)

# Map probes to genes
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata 
note = "Dataset contains gene expression data from PBMCs and height measurements from 40 subjects"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from microarray (Affymetrix) 
is_gene_available = True

# 2.1 Data Availability
trait_row = 2  # height data in row 2
age_row = 1    # age data in row 1
gender_row = None  # All females, so not useful for association study

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    try:
        # Extract numeric value after colon and convert to float
        return float(x.split(': ')[1])
    except:
        return None

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        # Extract numeric value after colon and convert to float
        return float(x.split(': ')[1])
    except:
        return None

def convert_gender(x):
    # Not needed since gender is constant
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=None,
        convert_gender=None
    )
    
    # Preview the extracted features
    preview = preview_df(selected_clinical)
    print("Preview of selected clinical features:")
    print(preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)