File size: 5,103 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Height"
cohort = "GSE71994"

# Input paths
in_trait_dir = "../DATA/GEO/Height"
in_cohort_dir = "../DATA/GEO/Height/GSE71994"

# Output paths
out_data_file = "./output/preprocess/3/Height/GSE71994.csv"
out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE71994.csv"
out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE71994.csv"
json_path = "./output/preprocess/3/Height/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True  # Study mentions "genome-wide gene expression analysis" in PBMC

# 2.1 Data Availability
trait_row = 4  # Height data is in row 4
age_row = 3  # Age data is in row 3  
gender_row = 1  # Gender data is in row 1

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if not isinstance(x, str):
        return None
    try:
        # Extract numeric value after colon
        value = float(x.split(':')[1].strip())
        return value  # Height as continuous value in meters
    except:
        return None

def convert_age(x):
    if not isinstance(x, str):
        return None
    try:
        # Extract numeric value after colon 
        value = int(x.split(':')[1].strip())
        return value  # Age as continuous value in years
    except:
        return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    value = x.split(':')[1].strip().lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save Initial Filtering Results
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview results
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Looking at the index/ID values (e.g. 7896746), these appear to be probe/array IDs rather than human gene symbols
# These numeric IDs need to be mapped to standard gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. Identify columns for mapping 
# ID column matches probe IDs in gene expression data
# gene_assignment column contains gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# 2. Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# 3. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)

# Print information about the resulting gene expression data
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index[:10]))
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata 
note = "Dataset contains gene expression data from PBMCs and height measurements from 40 subjects"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)