File size: 5,602 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hemochromatosis"
cohort = "GSE50579"
# Input paths
in_trait_dir = "../DATA/GEO/Hemochromatosis"
in_cohort_dir = "../DATA/GEO/Hemochromatosis/GSE50579"
# Output paths
out_data_file = "./output/preprocess/3/Hemochromatosis/GSE50579.csv"
out_gene_data_file = "./output/preprocess/3/Hemochromatosis/gene_data/GSE50579.csv"
out_clinical_data_file = "./output/preprocess/3/Hemochromatosis/clinical_data/GSE50579.csv"
json_path = "./output/preprocess/3/Hemochromatosis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on series title "Expression profiling" and no mention of miRNA/methylation
is_gene_available = True
# 2.1 Data Availability
# For trait - index 1 has "etiology: genetic hemochromatosis"
trait_row = 1
# For gender - index 3 has gender data
gender_row = 3
# For age - index 5 has age data
age_row = 5
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait value to binary (0=control, 1=case)"""
if pd.isna(value) or value == 'n.d.':
return None
if 'hemochromatosis' in value.lower():
return 1
return 0
def convert_age(value: str) -> float:
"""Convert age value to continuous numeric"""
if pd.isna(value) or value == 'n.d.':
return None
age = value.split(':')[1].strip()
if age == 'n.d.':
return None
return float(age)
def convert_gender(value: str) -> int:
"""Convert gender value to binary (0=female, 1=male)"""
if pd.isna(value) or value == 'n.d.':
return None
gender = value.split(':')[1].strip()
if gender == 'n.d.':
return None
return 1 if gender.lower() == 'male' else 0
# 3. Save metadata
# Initial filtering using validate_and_save_cohort_info
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview extracted features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The identifiers look like probe IDs (Agilent microarray probes starting with A_19_P), not standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene mapping columns from annotation data
# 'ID' column contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols
gene_mapping = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview the first few rows of gene expression data
print("Preview of gene expression data after mapping:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from skeletal muscle biopsies and height measurements from subjects"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |