File size: 5,602 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hemochromatosis"
cohort = "GSE50579"

# Input paths
in_trait_dir = "../DATA/GEO/Hemochromatosis"
in_cohort_dir = "../DATA/GEO/Hemochromatosis/GSE50579"

# Output paths
out_data_file = "./output/preprocess/3/Hemochromatosis/GSE50579.csv"
out_gene_data_file = "./output/preprocess/3/Hemochromatosis/gene_data/GSE50579.csv"
out_clinical_data_file = "./output/preprocess/3/Hemochromatosis/clinical_data/GSE50579.csv"
json_path = "./output/preprocess/3/Hemochromatosis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on series title "Expression profiling" and no mention of miRNA/methylation
is_gene_available = True

# 2.1 Data Availability
# For trait - index 1 has "etiology: genetic hemochromatosis" 
trait_row = 1

# For gender - index 3 has gender data
gender_row = 3  

# For age - index 5 has age data
age_row = 5

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait value to binary (0=control, 1=case)"""
    if pd.isna(value) or value == 'n.d.':
        return None
    if 'hemochromatosis' in value.lower():
        return 1
    return 0

def convert_age(value: str) -> float:
    """Convert age value to continuous numeric"""
    if pd.isna(value) or value == 'n.d.':
        return None
    age = value.split(':')[1].strip()
    if age == 'n.d.':
        return None
    return float(age)

def convert_gender(value: str) -> int:
    """Convert gender value to binary (0=female, 1=male)"""
    if pd.isna(value) or value == 'n.d.':
        return None
    gender = value.split(':')[1].strip()
    if gender == 'n.d.':
        return None
    return 1 if gender.lower() == 'male' else 0

# 3. Save metadata
# Initial filtering using validate_and_save_cohort_info
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available,  
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview extracted features
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The identifiers look like probe IDs (Agilent microarray probes starting with A_19_P), not standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene mapping columns from annotation data
# 'ID' column contains probe IDs matching gene expression data
# 'GENE_SYMBOL' contains the target gene symbols 
gene_mapping = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL')

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Preview the first few rows of gene expression data
print("Preview of gene expression data after mapping:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from skeletal muscle biopsies and height measurements from subjects"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)