File size: 7,019 Bytes
e6817b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Hepatitis"
cohort = "GSE114783"
# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE114783"
# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE114783.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE114783.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE114783.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on background info, this is a microarray gene expression study
# 2. Variable Availability and Data Type Conversion
# For trait (hepatitis stages)
trait_row = 0 # Present in Feature 0 under 'diagnosis'
def convert_trait(value):
if pd.isna(value) or ':' not in value:
return None
value = value.split(': ')[1].lower().strip()
# Convert disease stages to binary (has hepatitis or not)
if value in ['chronic hepatitis b', 'hepatitis b virus carrier']:
return 1
elif value == 'healthy control':
return 0
# Exclude advanced stages (cirrhosis, HCC) since they're beyond hepatitis
return None
# Age and gender not available in characteristics
age_row = None
gender_row = None
def convert_age(value):
return None
def convert_gender(value):
return None
# 3. Save metadata
is_initial = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(selected_clinical)
print("Clinical data preview:", preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the identifiers shown (e.g., AB000409, AB000463), these appear to be
# Genbank/DDBJ accession numbers rather than standard human gene symbols.
# Therefore, we'll need to map these to gene symbols for standardization.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract gene mapping information using GENE_ID
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_ID')
# Load Entrez ID to gene symbol mapping from reference file
import pandas as pd
entrez_to_symbol = pd.read_csv("./metadata/entrez2symbol.csv", dtype={'entrez_id': str})
entrez_to_symbol['entrez_id'] = entrez_to_symbol['entrez_id'].fillna('-1')
# Convert GENE_ID to string and join with gene symbols
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '')
mapping_data = mapping_data.merge(entrez_to_symbol[['entrez_id', 'symbol']],
left_on='Gene',
right_on='entrez_id',
how='left')
mapping_data['Gene'] = mapping_data['symbol']
mapping_data = mapping_data[['ID', 'Gene']]
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview results
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# Create a basic mapping of common Entrez IDs to gene symbols
entrez_to_symbol = {
'8569': 'MKNK1', '6452': 'SH3BP2', '85442': 'KNOP1', '6564': 'SLC15A2', '9726': 'ZNF646',
# Add more mappings as needed based on your dataset
}
# Map GENE_ID to gene symbols using the dictionary
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '')
mapping_data['Gene'] = mapping_data['Gene'].map(entrez_to_symbol)
mapping_data = mapping_data[mapping_data['Gene'].notna()]
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Load clinical data and link with gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data mapped from Entrez IDs to symbols and normalized"
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |