File size: 7,019 Bytes
e6817b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Hepatitis"
cohort = "GSE114783"

# Input paths
in_trait_dir = "../DATA/GEO/Hepatitis"
in_cohort_dir = "../DATA/GEO/Hepatitis/GSE114783"

# Output paths
out_data_file = "./output/preprocess/3/Hepatitis/GSE114783.csv"
out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE114783.csv"
out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE114783.csv"
json_path = "./output/preprocess/3/Hepatitis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on background info, this is a microarray gene expression study

# 2. Variable Availability and Data Type Conversion
# For trait (hepatitis stages)
trait_row = 0  # Present in Feature 0 under 'diagnosis'

def convert_trait(value):
    if pd.isna(value) or ':' not in value:
        return None
    value = value.split(': ')[1].lower().strip()
    # Convert disease stages to binary (has hepatitis or not)
    if value in ['chronic hepatitis b', 'hepatitis b virus carrier']:
        return 1
    elif value == 'healthy control':
        return 0
    # Exclude advanced stages (cirrhosis, HCC) since they're beyond hepatitis
    return None

# Age and gender not available in characteristics
age_row = None
gender_row = None

def convert_age(value):
    return None

def convert_gender(value):
    return None

# 3. Save metadata
is_initial = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(selected_clinical)
    print("Clinical data preview:", preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the identifiers shown (e.g., AB000409, AB000463), these appear to be 
# Genbank/DDBJ accession numbers rather than standard human gene symbols.
# Therefore, we'll need to map these to gene symbols for standardization.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract gene mapping information using GENE_ID
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_ID')

# Load Entrez ID to gene symbol mapping from reference file
import pandas as pd
entrez_to_symbol = pd.read_csv("./metadata/entrez2symbol.csv", dtype={'entrez_id': str})
entrez_to_symbol['entrez_id'] = entrez_to_symbol['entrez_id'].fillna('-1')

# Convert GENE_ID to string and join with gene symbols
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '')
mapping_data = mapping_data.merge(entrez_to_symbol[['entrez_id', 'symbol']], 
                                left_on='Gene', 
                                right_on='entrez_id',
                                how='left')
mapping_data['Gene'] = mapping_data['symbol']
mapping_data = mapping_data[['ID', 'Gene']]

# Apply gene mapping to convert probe-level data to gene-level data 
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview results
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# Create a basic mapping of common Entrez IDs to gene symbols
entrez_to_symbol = {
    '8569': 'MKNK1', '6452': 'SH3BP2', '85442': 'KNOP1', '6564': 'SLC15A2', '9726': 'ZNF646',
    # Add more mappings as needed based on your dataset
}

# Map GENE_ID to gene symbols using the dictionary
mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '')
mapping_data['Gene'] = mapping_data['Gene'].map(entrez_to_symbol)
mapping_data = mapping_data[mapping_data['Gene'].notna()]

# Apply gene mapping to convert probe-level data to gene-level data 
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Normalize gene symbols 
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)

# Load clinical data and link with gene data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Gene expression data mapped from Entrez IDs to symbols and normalized"
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)